Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct structural deficits in treatment-resistant schizophrenia and their putative neurotransmitter basis: a source-based morphometry analysis

Abstract

Schizophrenia is associated with widespread gray matter reduction. This is influenced by the underlying connectivity, resulting in covarying patterns of structural changes that are more pronounced in treatment-resistant individuals. However, it remains uncertain whether a distinct network of brain regions, with specific neurotransmitter basis, forms the substrate for treatment resistance in schizophrenia. We investigated the structural covariance networks (SCN) in 198 individuals; 55 with treatment-resistant schizophrenia (TRS) and 79 without TRS (non-TRS) in active symptomatic phase, and 64 healthy controls (HC) using Calhoun’s Source-Based Morphometry. We mapped the putative neurotransmitter basis of the SCNs using a PET-based chemoarchitectural atlas. Twelve independent components (i.e., SCNs) were identified. A prefrontal-limbic SCN had lower gray matter volume (GMV) in TRS compared to HC and non-TRS (F = 7.757, p < 0.001, FDR-corrected). Spatial correlation with chemoarchitectural atlas revealed predominant contributions from serotonergic [5HT1b and 5HT2a], glutamatergic [mGluR5], histaminergic [H3], and opioid [MOR] receptors for this TRS-related SCN (all pspin-permutation < 0.05, FDR-corrected). A different SCN comprised of dorsal fronto-temporal and parieto-occipital regions, not associated with  any specific neurotransmitter distribution, exhibited reduced GMV in both TRS and non-TRS groups vs. HC (F = 7.239, p < 0.001, FDR-corrected). Amidst the generic GMV reduction that is shared with non-TRS patients, patients with TRS have specific prefrontal-limbic structural deficits with a unique non-dopaminergic chemoarchitecture. These findings indicate a putative molecular and structural basis for poor treatment response, guiding the development of second- and third-line pharmacotherapies for TRS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial distribution and functional annotation of the two structural covariance networks (IC08 and IC10).
Fig. 2: Functional network contribution to the two structural covariance networks (IC08 and IC10).
Fig. 3: Post-hoc group comparisons of IC08 and IC10 loading coefficients.
Fig. 4: Spatial Spearman correlations between IC and neurotransmitter maps.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due that they contain patients’ personal information, and our hospital has strict data sharing policy, but are available from the corresponding author on reasonable request.

Code availability

The accompanying code for this study is available on GitHub (https://github.com/huanhuang1988/TRS_neuromaps).

References

  1. Kane JM, Agid O, Baldwin ML, Howes O, Lindenmayer JP, Marder S, et al. Clinical guidance on the identification and management of treatment-resistant schizophrenia. J Clin Psychiatry. 2019;80:18com12123.

    Article  PubMed  Google Scholar 

  2. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum ML, et al. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2017;174:216–29.

    Article  PubMed  Google Scholar 

  3. Farooq S, Hattle M, Kingstone T, Ajnakina O, Dazzan P, Demjaha A, et al. Development and initial evaluation of a clinical prediction model for risk of treatment resistance in first-episode psychosis: schizophrenia prediction of resistance to treatment (SPIRIT). Br J Psychiatry. 2024;225:379–88.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee R, Griffiths SL, Gkoutos GV, Wood SJ, Bravo-Merodio L, Lalousis PA, et al. Predicting treatment resistance in positive and negative symptom domains from first episode psychosis: development of a clinical prediction model. Schizophr Res. 2024;274:66–77.

    Article  CAS  PubMed  Google Scholar 

  5. Barruel D, Hilbey J, Charlet J, Chaumette B, Krebs MO, Dauriac-Le Masson V. Predicting treatment resistance in schizophrenia patients: machine learning highlights the role of early pathophysiologic features. Schizophr Res. 2024;270:1–10.

    Article  PubMed  Google Scholar 

  6. Llorca-Bofi V, Bioque M, Madero S, Mallorqui A, Oliveira C, Garriga M, et al. Blood cell count ratios at baseline are associated with initial clinical response to clozapine in treatment-resistant, clozapine-naive, schizophrenia-spectrum disorder. Pharmacopsychiatry. 2024;57:173–79.

    Article  PubMed  Google Scholar 

  7. Siskind D, Orr S, Sinha S, Yu O, Brijball B, Warren N, et al. Rates of treatment-resistant schizophrenia from first-episode cohorts: systematic review and meta-analysis. Br J Psychiatry. 2022;220:115–20.

    Article  PubMed  Google Scholar 

  8. Yoshimura B, Yada Y, So R, Takaki M, Yamada N. The critical treatment window of clozapine in treatment-resistant schizophrenia: secondary analysis of an observational study. Psychiatry Res. 2017;250:65–70.

    Article  CAS  PubMed  Google Scholar 

  9. Correll CU, Howes OD. Treatment-resistant schizophrenia: definition, predictors, and therapy options. J Clin Psychiatry. 2021;82:MY20096AH1C.

    Article  PubMed  Google Scholar 

  10. Mouchlianitis E, McCutcheon R, Howes OD. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. Lancet Psychiatry. 2016;3:451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anderson VM, Goldstein ME, Kydd RR, Russell BR. Extensive gray matter volume reduction in treatment-resistant schizophrenia. Int J Neuropsychopharmacol. 2015;18:pyv016.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tronchin G, Akudjedu TN, Ahmed M, Holleran L, Hallahan B, Cannon DM, et al. Progressive subcortical volume loss in treatment-resistant schizophrenia patients after commencing clozapine treatment. Neuropsychopharmacology. 2020;45:1353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39:1129–38.

    Article  PubMed  Google Scholar 

  14. Nakajima S, Takeuchi H, Plitman E, Fervaha G, Gerretsen P, Caravaggio F, et al. Neuroimaging findings in treatment-resistant schizophrenia: a systematic review: lack of neuroimaging correlates of treatment-resistant schizophrenia. Schizophr Res. 2015;164:164–75.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nucifora FC Jr., Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2019;131:104257.

    Article  PubMed  Google Scholar 

  16. Pan Y, Pu W, Chen X, Huang X, Cai Y, Tao H, et al. Morphological profiling of schizophrenia: cluster analysis of MRI-based cortical thickness data. Schizophr Bull. 2020;46:623–32.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liang L, Heinrichs RW, Liddle PF, Jeon P, Theberge J, Palaniyappan L. Cortical impoverishment in a stable subgroup of schizophrenia: validation across various stages of psychosis. Schizophr Res. 2024;264:567–77.

    Article  PubMed  Google Scholar 

  18. Jiang Y, Wang J, Zhou E, Palaniyappan L, Luo C, Ji G, et al. Neuroimaging biomarkers define neurophysiological subtypes with distinct trajectories in schizophrenia. Nat Ment Health. 2023;1:186–99.

    Article  Google Scholar 

  19. Jiang Y, Palaniyappan L, Luo C, Chang X, Zhang J, Tang Y, et al. Neuroimaging epicenters as potential sites of onset of the neuroanatomical pathology in schizophrenia. Sci Adv. 2024;10:eadk6063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palaniyappan L. Clusters of psychosis: compensation as a contributor to the heterogeneity of schizophrenia. J Psychiatry Neurosci. 2023;48:E325–E29.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Palaniyappan L. Progressive cortical reorganisation: a framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev. 2017;79:1–13.

    Article  PubMed  Google Scholar 

  22. Georgiadis F, Lariviere S, Glahn D, Hong LE, Kochunov P, Mowry B, et al. Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study. Molecular psychiatry. 2024;29:1869–1881.

  23. Potkin SG, Kane JM, Correll CU, Lindenmayer JP, Agid O, Marder SR, et al. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. Focus Am Psychiatr Publ. 2020;18:456–65.

    PubMed  PubMed Central  Google Scholar 

  24. Jiang Y, Luo C, Wang J, Palaniyappan L, Chang X, Xiang S, et al. Neurostructural subgroup in 4291 individuals with schizophrenia identified using the subtype and stage inference algorithm. Nat Commun. 2024;15:5996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makhlouf AT, Drew W, Stubbs JL, Taylor JJ, Liloia D, Grafman J, et al. Heterogeneous patterns of brain atrophy in schizophrenia localize to a common brain network. Nat Ment Health. 2024;3:19–30.

    Article  Google Scholar 

  26. Liu Z, Palaniyappan L, Wu X, Zhang K, Du J, Zhao Q, et al. Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis. Mol psychiatry. 2021;26:7719–31.

    Article  PubMed  Google Scholar 

  27. Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD. Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp. 2009;30:711–24.

    Article  PubMed  Google Scholar 

  28. Gupta CN, Turner JA, Calhoun VD. Source-based morphometry: a decade of covarying structural brain patterns. Brain Struct Funct. 2019;224:3031–44.

    Article  PubMed  Google Scholar 

  29. Saha DK, Silva RF, Baker BT, Saha R, Calhoun VD. dcSBM: A federated constrained source-based morphometry approach for multivariate brain structure mapping. Hum Brain Mapp. 2023;44:5892–905.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gupta CN, Calhoun VD, Rachakonda S, Chen J, Patel V, Liu J, et al. Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophr Bull. 2015;41:1133–42.

    Article  PubMed  Google Scholar 

  31. Palaniyappan L, Mahmood J, Balain V, Mougin O, Gowland PA, Liddle PF. Structural correlates of formal thought disorder in schizophrenia: An ultra-high field multivariate morphometry study. Schizophr Res. 2015;168:305–12.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wolf R, Huber M, Lepping P, Sambataro F, Depping MS, Karner M, et al. Source-based morphometry reveals distinct patterns of aberrant brain volume in delusional infestation. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:112–6.

    Article  PubMed  Google Scholar 

  33. Tsugawa S, Honda S, Noda Y, Wannan C, Zalesky A, Tarumi R, et al. Associations between structural covariance network and antipsychotic treatment response in schizophrenia. Schizophr Bull. 2024;50:382–92.

    Article  PubMed  Google Scholar 

  34. Hansen JY, Shafiei G, Markello RD, Smart K, Cox SML, Norgaard M, et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex. Nat Neurosci. 2022;25:1569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leucht S, Samara M, Heres S, Patel MX, Woods SW, Davis JM. Dose equivalents for second-generation antipsychotics: the minimum effective dose method. Schizophr Bull. 2014;40:314–26.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lally J, Ajnakina O, Di Forti M, Trotta A, Demjaha A, Kolliakou A, et al. Two distinct patterns of treatment resistance: clinical predictors of treatment resistance in first-episode schizophrenia spectrum psychoses. Psychol Med. 2016;46:3231–40.

    Article  CAS  PubMed  Google Scholar 

  37. Farooq S, Hattle M, Dazzan P, Kingstone T, Ajnakina O, Shiers D, et al. Study protocol for the development and internal validation of Schizophrenia Prediction of Resistance to Treatment (SPIRIT): a clinical tool for predicting risk of treatment resistance to antipsychotics in first-episode schizophrenia. BMJ Open. 2022;12:e056420.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E, The Alzheimer's Disease Neuroimaging Initiative. CAT: a computational anatomy toolbox for the analysis of structural MRI data. Gigascience. 2024;13:giae049.

  39. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129–59.

    Article  CAS  PubMed  Google Scholar 

  40. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex. 2018;28:3095–114.

    Article  PubMed  Google Scholar 

  41. Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23:1421–32.

    Article  CAS  PubMed  Google Scholar 

  42. Kasparek T, Marecek R, Schwarz D, Prikryl R, Vanicek J, Mikl M, et al. Source-based morphometry of gray matter volume in men with first-episode schizophrenia. Hum Brain Mapp. 2010;31:300–10.

    Article  PubMed  Google Scholar 

  43. Li M, Deng W, Li Y, Zhao L, Ma X, Yu H, et al. Ameliorative patterns of grey matter in patients with first-episode and treatment-naive schizophrenia. Psychol Med. 2023;53:3500–10.

    Article  PubMed  Google Scholar 

  44. Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, et al. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry. 2008;64:774–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qiu L, Yan H, Zhu R, Yan J, Yuan H, Han Y, et al. Correlations between exploratory eye movement, hallucination, and cortical gray matter volume in people with schizophrenia. BMC Psychiatry. 2018;18:226.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Picado M, Carmona S, Hoekzema E, Pailhez G, Berge D, Mane A, et al. The neuroanatomical basis of panic disorder and social phobia in schizophrenia: a voxel based morphometric study. PLoS ONE. 2015;10:e0119847.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moorhead TW, Job DE, Whalley HC, Sanderson TL, Johnstone EC, Lawrie SM. Voxel-based morphometry of comorbid schizophrenia and learning disability: analyses in normalized and native spaces using parametric and nonparametric statistical methods. Neuroimage. 2004;22:188–202.

    Article  PubMed  Google Scholar 

  48. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Article  PubMed  Google Scholar 

  49. Fan L, Yu M, Pinkham A, Zhu Y, Tang X, Wang X, et al. Aberrant large-scale brain modules in deficit and non-deficit schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2022;113:110461.

    Article  PubMed  Google Scholar 

  50. Nelson BG, Bassett DS, Camchong J, Bullmore ET, Lim KO. Comparison of large-scale human brain functional and anatomical networks in schizophrenia. Neuroimage Clin. 2017;15:439–48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rong B, Huang H, Gao G, Sun L, Zhou Y, Xiao L, et al. Widespread intra- and inter-network dysconnectivity among large-scale resting state networks in schizophrenia. J Clin Med. 2023;12:3176.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Geyer S, Schormann T, Mohlberg H, Zilles K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage. 2000;11:684–96.

    Article  CAS  PubMed  Google Scholar 

  53. Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA, et al. Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology. 1995;45:919–24.

    Article  CAS  PubMed  Google Scholar 

  54. Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78:69–74.

    Article  PubMed  Google Scholar 

  55. Boos HB, Aleman A, Cahn W, Hulshoff Pol H, Kahn RS. Brain volumes in relatives of patients with schizophrenia: a meta-analysis. Arch Gen Psychiatry. 2007;64:297–304.

    Article  PubMed  Google Scholar 

  56. Skouras S, Kleinert ML, Lee EHM, Hui CLM, Suen YN, Camchong J, et al. Aberrant connectivity in the hippocampus, bilateral insula and temporal poles precedes treatment resistance in first-episode psychosis: a prospective resting-state functional magnetic resonance imaging study with connectivity concordance mapping. Brain Commun. 2024;6:fcae094.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tronchin G, McPhilemy G, Ahmed M, Kilmartin L, Costello L, Forde NJ, et al. White matter microstructure and structural networks in treatment-resistant schizophrenia patients after commencing clozapine treatment: a longitudinal diffusion imaging study. Psychiatry Res. 2021;298:113772.

    Article  CAS  PubMed  Google Scholar 

  58. Horne CM, Vanes LD, Verneuil T, Mouchlianitis E, Szentgyorgyi T, Averbeck B, et al. Cognitive control network connectivity differentially disrupted in treatment resistant schizophrenia. Neuroimage Clin. 2021;30:102631.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wada M, Nakajima S, Tarumi R, Masuda F, Miyazaki T, Tsugawa S, et al. Resting-state isolated effective connectivity of the cingulate cortex as a neurophysiological biomarker in patients with severe treatment-resistant schizophrenia. J Pers Med. 2020;10:89.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chan NK, Kim J, Shah P, Brown EE, Plitman E, Carravaggio F, et al. Resting-state functional connectivity in treatment response and resistance in schizophrenia: a systematic review. Schizophr Res. 2019;211:10–20.

    Article  PubMed  Google Scholar 

  61. McNabb CB, Tait RJ, McIlwain ME, Anderson VM, Suckling J, Kydd RR, et al. Functional network dysconnectivity as a biomarker of treatment resistance in schizophrenia. Schizophr Res. 2018;195:160–67.

    Article  PubMed  Google Scholar 

  62. Mehta UM, Ithal D, Roy N, Shekhar S, Govindaraj R, Ramachandraiah CT, et al. Posterior cerebellar resting-state functional hypoconnectivity: a neural marker of schizophrenia across different stages of treatment response. Biol Psychiatry. 2024;96:365–75.

    Article  PubMed  Google Scholar 

  63. Palaniyappan L, Marques TR, Taylor H, Mondelli V, Reinders A, Bonaccorso S, et al. Globally efficient brain organization and treatment response in psychosis: a connectomic study of gyrification. Schizophr Bull. 2016;42:1446–56.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wannan CMJ, Cropley VL, Chakravarty MM, Bousman C, Ganella EP, Bruggemann JM, et al. Evidence for network-based cortical thickness reductions in schizophrenia. Am J Psychiatry. 2019;176:552–63.

    Article  PubMed  Google Scholar 

  65. Ajnakina O, Das T, Lally J, Di Forti M, Pariante CM, Marques TR, et al. Structural covariance of cortical gyrification at illness onset in treatment resistance: a longitudinal study of first-episode psychoses. Schizophr Bull. 2021;47:1729–39.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jiang Y, Wang Y, Huang H, He H, Tang Y, Su W, et al. Antipsychotics effects on network-level reconfiguration of cortical morphometry in first-episode schizophrenia. Schizophr Bull. 2022;48:231–40.

    Article  PubMed  Google Scholar 

  67. Saiz-Masvidal C, Contreras F, Soriano-Mas C, Mezquida G, Diaz-Caneja CM, Vieta E, et al. Structural covariance predictors of clinical improvement at 2-year follow-up in first-episode psychosis. Prog Neuropsychopharmacol Biol Psychiatry. 2023;120:110645.

    Article  PubMed  Google Scholar 

  68. Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, et al. Structural covariance networks in schizophrenia: a systematic review Part I. Schizophr Res. 2022;240:1–21.

    Article  PubMed  Google Scholar 

  69. Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, et al. Structural covariance networks in schizophrenia: a systematic review Part II. Schizophr Res. 2022;239:176–91.

    Article  PubMed  Google Scholar 

  70. Kubera KM, Sambataro F, Vasic N, Wolf ND, Frasch K, Hirjak D, et al. Source-based morphometry of gray matter volume in patients with schizophrenia who have persistent auditory verbal hallucinations. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:102–9.

    Article  PubMed  Google Scholar 

  71. Menon B. Towards a new model of understanding - the triple network, psychopathology and the structure of the mind. Med Hypotheses. 2019;133:109385.

    Article  PubMed  Google Scholar 

  72. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  73. Supekar K, Cai W, Krishnadas R, Palaniyappan L, Menon V. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol Psychiatry. 2019;85:60–69.

    Article  PubMed  Google Scholar 

  74. Menon V, Palaniyappan L, Supekar K. Integrative brain network and salience models of psychopathology and cognitive dysfunction in schizophrenia. Biol Psychiatry. 2023;94:108–20.

    Article  PubMed  Google Scholar 

  75. Harikumar A, Solovyeva KP, Misiura M, Iraji A, Plis SM, Pearlson GD, et al. Revisiting functional dysconnectivity: a review of three model frameworks in schizophrenia. Curr Neurol Neurosci Rep. 2023;23:937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang S, Wang Q, Greenshaw AJ, Li X, Deng W, Ren H, et al. Aberrant triple-network connectivity patterns discriminate biotypes of first-episode medication-naive schizophrenia in two large independent cohorts. Neuropsychopharmacology. 2021;46:1502–09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gaitonde SA, Avet C, de la Fuente Revenga M, Blondel-Tepaz E, Shahraki A, Pastor AM, et al. Pharmacological fingerprint of antipsychotic drugs at the serotonin 5-HT(2A) receptor. Mol psychiatry. 2024;29:2753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kantrowitz JT. Targeting serotonin 5-HT(2A) receptors to better treat schizophrenia: rationale and current approaches. CNS Drugs. 2020;34:947–59.

    Article  CAS  PubMed  Google Scholar 

  79. Audinot V, Newman-Tancredi A, Cussac D, Millan MJ. Inverse agonist properties of antipsychotic agents at cloned, human (h) serotonin (5-HT)(1B) and h5-HT(1D) receptors. Neuropsychopharmacology. 2001;25:410–22.

    Article  CAS  PubMed  Google Scholar 

  80. Wang HY, MacDonald ML, Borgmann-Winter KE, Banerjee A, Sleiman P, Tom A, et al. mGluR5 hypofunction is integral to glutamatergic dysregulation in schizophrenia. Mol Psychiatry. 2020;25:750–60.

    Article  CAS  PubMed  Google Scholar 

  81. Matosin N, Newell KA. Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev. 2013;37:256–68.

    Article  CAS  PubMed  Google Scholar 

  82. Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ. Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-D-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol. 2009;12:45–60.

    Article  CAS  PubMed  Google Scholar 

  83. Akkus F, Treyer V, Ametamey SM, Johayem A, Buck A, Hasler G. Metabotropic glutamate receptor 5 neuroimaging in schizophrenia. Schizophr Res. 2017;183:95–101.

    Article  PubMed  Google Scholar 

  84. Ashok AH, Myers J, Reis Marques T, Rabiner EA, Howes OD. Reduced mu opioid receptor availability in schizophrenia revealed with [(11)C]-carfentanil positron emission tomographic Imaging. Nat Commun. 2019;10:4493.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Arumuham A, Nour MM, Veronese M, Onwordi EC, Rabiner EA, Howes OD. The histamine system and cognitive function: an in vivo H3 receptor PET imaging study in healthy volunteers and patients with schizophrenia. J Psychopharmacol. 2023;37:1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coyle JT. Passing the torch: the ascendance of the glutamatergic synapse in the pathophysiology of schizophrenia. Biochem Pharm. 2024;228:116376.

    Article  CAS  PubMed  Google Scholar 

  87. Clark SD, Van Snellenberg JX, Lawson JM, Abi-Dargham A. Opioid antagonists are associated with a reduction in the symptoms of schizophrenia: a meta-analysis of controlled trials. Neuropsychopharmacology. 2020;45:1860–69.

    Article  PubMed  PubMed Central  Google Scholar 

  88. McCutcheon RA, Cowen P, Nour MM, Pillinger T. Psychotropic taxonomies: constructing a therapeutic framework for psychiatry. Biol Psychiatry. 2024. https://doi.org/10.1016/j.biopsych.2024.12.004.

  89. Ye N, Wang Q, Li Y, Zhen X. Current emerging therapeutic targets and clinical investigational agents for schizophrenia: challenges and opportunities. Med Res Rev. 2025;45:755–87.

    Article  CAS  PubMed  Google Scholar 

  90. Riddy DM, Cook AE, Shackleford DM, Pierce TL, Mocaer E, Mannoury la Cour C, et al. Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H(3) receptor antagonists. Neuropharmacology. 2019;144:244–55.

    Article  CAS  PubMed  Google Scholar 

  91. Hill MD, Fang H, Brown JM, Molski T, Easton A, Han X, et al. Development of 1H-Pyrazolo[3,4-b]pyridines as metabotropic glutamate receptor 5 positive allosteric modulators. ACS Med Chem Lett. 2016;7:1082–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaul I, Sawchak S, Walling DP, Tamminga CA, Breier A, Zhu H, et al. Efficacy and safety of xanomeline-trospium chloride in schizophrenia: a randomized clinical trial. JAMA Psychiatry. 2024;81:749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Achtyes ED, Hopkins SC, Dedic N, Dworak H, Zeni C, Koblan K. Ulotaront: review of preliminary evidence for the efficacy and safety of a TAAR1 agonist in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2023;273:1543–56.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rosenbrock H, Desch M, Wunderlich G. Development of the novel GlyT1 inhibitor, iclepertin (BI 425809), for the treatment of cognitive impairment associated with schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2023;273:1557–66.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, et al. Regional patterns of human cortex development correlate with underlying neurobiology. Nat Commun. 2024;15:7987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to all subjects for their time and efforts.

Funding

The study is supported by the Fundamental Research Funds for the Central Universities (2042020kf0128), Health Commission of Hubei Province scientific research project (WJ2021M142), the Medical Science Advancement Program of Wuhan University (TFLC2018001), Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University (JCRCFZ-2022-003), Hubei Provincial Science and Technology Plan Project (2023BCB133), and National Natural Science Foundation of China (82471523). L. Palaniyappan’s research is supported by the Canada First Research Excellence Fund, awarded to the Healthy Brains, Healthy Lives initiative at McGill University (through a New Investigator Supplement to LP) and Monique H. Bourgeois Chair in Developmental Disorders and the Graham Boeckh Foundation. He receives a salary award from the Fonds de recherche du Québec-Santé (FRQS 366934).This work was undertaken with the support of a China Canada High Level Medical Research Talent Fellowship for HH supervised by LP.

Author information

Authors and Affiliations

Authors

Contributions

HLW and LP designed the study. HH, WXW, XQ, RX, YX, CC, WY, YLP, HL, QRW, and HLW conducted subjects’ recruitment and performed the study. HH, LP, YZ, WXW, and XQ undertook the data analysis; HH wrote the first draft of the manuscript. WHL and LP revised the manuscript. All authors contributed to and have approved the final manuscript.

Corresponding authors

Correspondence to Huiling Wang or Lena Palaniyappan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The authors confirm that all experiments involving human participants were performed in accordance with relevant guidelines and regulations. The Ethics Committee of Renmin Hospital of Wuhan University approved the study protocol. The written, informed consent of all subjects was obtained after receiving a complete description of the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, X., Qin, X. et al. Distinct structural deficits in treatment-resistant schizophrenia and their putative neurotransmitter basis: a source-based morphometry analysis. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02135-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02135-x

Search

Quick links