Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of early social isolation on social circuits and behavior: relevance to schizophrenia

Abstract

Social deficits are a core feature of many psychiatric disorders. Importantly, aberrant social experiences during childhood and adolescence profoundly influence maturation of the brain function and induce social impairments in adulthood. Social isolation, especially among youth, has been highlighted as a serious risk to mental health. As a result, understanding the consequences of social isolation on a mechanistic level has become increasingly urgent. Recent rodent studies have revealed that social isolation during development induces widespread changes in adult brain structures, particularly in the prefrontal cortical circuits, and causes altered social behavior. These findings led us to develop two models proposing that social isolation may cause deficits through either concurrent (social deprivation model) or subsequent (developmental mismatch model) to social disruption. Building on these two models, this review examines how these models provide complementary perspectives on the influence of social isolation on the progression of schizophrenia, from the prodromal to the psychotic phase, a condition in which genetic and environmental risk factors are closely linked to social isolation. Advancing our understanding of treatment timing and targets for isolation-induced social deficits through the lenses of these models may help identify the optimal developmental timing for effective interventions and prevention strategies for schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mPFC social circuits vulnerable to juvenile social isolation in mice.
Fig. 2: Social circuits beyond the PFC that are impacted by juvenile social isolation in mice.
Fig. 3: Overview of the social deprivation model, developmental mismatch model, and development of schizophrenia.

Similar content being viewed by others

References

  1. Cuthbert BN, Workgroup NR. The RDoC framework: continuing commentary. World Psychiatry. 2014;13:196–7.

    Article  PubMed Central  Google Scholar 

  2. Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal cortex and social cognition in mouse and man. Front Psychol. 2015;6:1805.

    Article  PubMed Central  Google Scholar 

  3. Segrin C. Social skills deficits associated with depression. Clin. Psychol. Rev. 2000;20:379–403.

    Article  CAS  Google Scholar 

  4. Champagne FA, Curley JP. How social experiences influence the brain. Curr. Opin. Neurobiol. 2005;15:704–9.

    Article  CAS  Google Scholar 

  5. Sachser N, Kaiser S, Hennessy MB. Behavioural profiles are shaped by social experience: when, how and why. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013;368:20120344.

    Article  PubMed Central  Google Scholar 

  6. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence?. Nat. Rev. Neurosci. 2008;9:947–57.

    Article  CAS  PubMed Central  Google Scholar 

  7. Mushtaq R, Shoib S, Shah T, Mushtaq S. Relationship between loneliness, psychiatric disorders and physical health ? A review on the psychological aspects of loneliness. J. Clin. Diagn. Res. 2014;8:WE01–04.

    PubMed Central  Google Scholar 

  8. Brandt L, Liu S, Heim C, Heinz A. The effects of social isolation stress and discrimination on mental health. Transl. Psychiatry. 2022;12:398.

    Article  PubMed Central  Google Scholar 

  9. Qualter P, Brown SL, Rotenberg KJ, Vanhalst J, Harris RA, Goossens L, et al. Trajectories of loneliness during childhood and adolescence: predictors and health outcomes. J. Adolesc. 2013;36:1283–93.

    Article  CAS  Google Scholar 

  10. Erickson DH, Beiser M, Iacono WG, Fleming JA, Lin TY. The role of social relationships in the course of first-episode schizophrenia and affective psychosis. Am. J. Psychiatry. 1989;146:1456–61.

    Article  CAS  Google Scholar 

  11. Parnas J, Bovet P, Zahavi D. Schizophrenic autism: clinical phenomenology and pathogenetic implications. World Psychiatry. 2002;1:131–6.

    PubMed Central  Google Scholar 

  12. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

    Article  PubMed Central  Google Scholar 

  13. Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, et al. Critical period regulation across multiple timescales. Proc. Natl. Acad. Sci. USA. 2020;117:23242–51.

    Article  CAS  PubMed Central  Google Scholar 

  14. Hensch TK. Critical period regulation. Annu Rev. Neurosci. 2004;27:549–79.

    Article  CAS  Google Scholar 

  15. Freedman DG, King JA, Elliot O. Critical period in the social development of dogs. Science. 1961;133:1016–7.

    Article  CAS  Google Scholar 

  16. Harlow HF, Novak MA. Psychopathological perspectives. Perspect. Biol. Med. 1973;16:461–78.

    Article  CAS  Google Scholar 

  17. Burke AR, McCormick CM, Pellis SM, Lukkes JL. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neurosci. Biobehav Rev. 2017;76:280–300.

    Article  Google Scholar 

  18. Palagi E, Burghardt GM, Smuts B, Cordoni G, Dall'Olio S, Fouts HN, et al. Rough-and-tumble play as a window on animal communication. Biol. Rev. Camb. Philos. Soc. 2016;91:311–27.

    Article  Google Scholar 

  19. Pellis SM, Pasztor TJ. The developmental onset of a rudimentary form of play fighting in C57 mice. Dev. Psychobiol. 1999;34:175–82.

    Article  CAS  Google Scholar 

  20. Arakawa H. Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behav. Brain Res. 2018;341:98–108.

    Article  Google Scholar 

  21. Bicks LK, Yamamuro K, Flanigan ME, Kim JM, Kato D, Lucas EK, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat. Commun. 2020;11:1003.

    Article  CAS  PubMed Central  Google Scholar 

  22. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science. 2012;337:1357–60.

    Article  CAS  PubMed Central  Google Scholar 

  23. Yamamuro K, Bicks LK, Leventhal MB, Kato D, Im S, Flanigan ME, et al. A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice. Nat. Neurosci. 2020;23:1240–52.

    Article  PubMed Central  Google Scholar 

  24. S Musardo, A Contestabile, M Knoop, O Baud, C Bellone, Oxytocin neurons mediate the effect of social isolation via the VTA circuits. Elife. 2022;11:e73421.

  25. Bator E, Latusz J, Głowacka U, Radaszkiewicz A, Mudlaff K, Maćkowiak M. Adolescent social isolation affects schizophrenia-like behavior in the MAM-E17 model of schizophrenia. Neurotox. Res. 2018;34:305–23.

    Article  Google Scholar 

  26. Hol T, Van den Berg CL, Van Ree JM, Spruijt BM. Isolation during the play period in infancy decreases adult social interactions in rats. Behav. Brain Res. 1999;100:91–7.

    Article  CAS  Google Scholar 

  27. Zhang X, Xun Y, Wang L, Zhang J, Hou W, Ma H, et al. Involvement of the dopamine system in the effect of chronic social isolation during adolescence on social behaviors in male C57 mice. Brain Res. 2021;1765:147497.

    Article  CAS  Google Scholar 

  28. Fone KC, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav Rev. 2008;32:1087–102.

    Article  CAS  Google Scholar 

  29. Li DC, Hinton EA, Gourley SL. Persistent behavioral and neurobiological consequences of social isolation during adolescence. Semin Cell Dev. Biol. 2021;118:73–82.

    Article  CAS  PubMed Central  Google Scholar 

  30. Mack NR, Bouras NN, Gao WJ. Prefrontal regulation of social behavior and related deficits: insights from rodent studies. Biol. Psychiatry. 2024;96:85–94.

    Article  PubMed Central  Google Scholar 

  31. Walker DM, Cunningham AM, Gregory JK, Nestler EJ. Long-term behavioral effects of post-weaning social isolation in males and females. Front Behav. Neurosci. 2019;13:66.

    Article  CAS  PubMed Central  Google Scholar 

  32. Xiong Y, Hong H, Liu C, Zhang YQ. Social isolation and the brain: effects and mechanisms. Mol. Psychiatry. 2023;28:191–201.

    Article  Google Scholar 

  33. Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, et al. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology. 2020;177:108231.

    Article  CAS  Google Scholar 

  34. Leussis MP, Lawson K, Stone K, Andersen SL. The enduring effects of an adolescent social stressor on synaptic density, part II: Poststress reversal of synaptic loss in the cortex by adinazolam and MK-801. Synapse. 2008;62:185–92.

    Article  CAS  Google Scholar 

  35. Kim GS, Lee H, Jeong Y. Altered dorsal functional connectivity after post-weaning social isolation and resocialization in mice. Neuroimage. 2021;245:118740.

    Article  Google Scholar 

  36. Yamamuro K, Yoshino H, Ogawa Y, Makinodan M, Toritsuka M, Yamashita M, et al. Social isolation during the critical period reduces synaptic and intrinsic excitability of a subtype of pyramidal cell in mouse prefrontal cortex. Cereb. Cortex. 2018;28:998–1010.

    Article  Google Scholar 

  37. Li X, Sun H, Zhu Y, Wang F, Wang X, Han L, et al. Dysregulation of prefrontal parvalbumin interneurons leads to adult aggression induced by social isolation stress during adolescence. Front Mol. Neurosci. 2022;15:1010152.

    Article  CAS  PubMed Central  Google Scholar 

  38. Makinodan M, Ikawa D, Yamamuro K, Yamashita Y, Toritsuka M, Kimoto S, et al. Effects of the mode of re-socialization after juvenile social isolation on medial prefrontal cortex myelination and function. Sci. Rep. 2017;7:5481.

    Article  PubMed Central  Google Scholar 

  39. Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol. 2005;492:145–77.

    Article  Google Scholar 

  40. Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci. 2021;44:538–49.

    Article  CAS  PubMed Central  Google Scholar 

  41. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science. 2017;357:1406–11.

    Article  CAS  PubMed Central  Google Scholar 

  42. Huang WC, Zucca A, Levy J, Page DT. Social Behavior is modulated by valence-encoding mPFC-Amygdala sub-circuitry. Cell Rep. 2020;32:107899.

    Article  CAS  PubMed Central  Google Scholar 

  43. Resendez SL, Namboodiri V, Otis JM, Eckman L, Rodriguez-Romaguera J, Ung RL, et al. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 2020;40:2282–95.

    Article  CAS  PubMed Central  Google Scholar 

  44. Paine TA, Swedlow N, Swetschinski L. Decreasing GABA function within the medial prefrontal cortex or basolateral amygdala decreases sociability. Behav. Brain Res. 2017;317:542–52.

    Article  CAS  Google Scholar 

  45. Zhang XQ, Yu ZP, Ling Y, Zhao QQ, Zhang ZY, Wang ZC, Shen HW. Enduring effects of juvenile social isolation on physiological properties of medium spiny neurons in nucleus accumbens. Psychopharmacology. 2019;236:3281–9.

    Article  CAS  Google Scholar 

  46. Lukkes JL, Mokin MV, Scholl JL, Forster GL. Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm. Behav. 2009;55:248–56.

    Article  CAS  Google Scholar 

  47. Shan Q, Hu Y, Chen S, Tian Y. Nucleus accumbens dichotomically controls social dominance in male mice. Neuropsychopharmacology. 2022;47:776–87.

    Article  CAS  Google Scholar 

  48. Baez-Mendoza R, Schultz W. The role of the striatum in social behavior. Front Neurosci. 2013;7:233.

    Article  PubMed Central  Google Scholar 

  49. Begni V, Zampar S, Longo L, Riva MA. Sex differences in the enduring effects of social deprivation during adolescence in rats: implications for psychiatric disorders. Neuroscience. 2020;437:11–22.

    Article  CAS  Google Scholar 

  50. Felix-Ortiz AC, Tye KM. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 2014;34:586–95.

    Article  CAS  PubMed Central  Google Scholar 

  51. ML Phillips, HA Robinson, L Pozzo-Miller, Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. Elife. 2019;8:e44182.

  52. Harte MK, Powell SB, Swerdlow NR, Geyer MA, Reynolds GP. Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. J. Neural Transm. 2007;114:893–8.

    Article  CAS  Google Scholar 

  53. Chini M, Hanganu-Opatz IL. Prefrontal cortex development in health and disease: lessons from rodents and humans. Trends Neurosci. 2021;44:227–40.

    Article  CAS  Google Scholar 

  54. CB Klune, B Jin, LA DeNardo, Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. Elife. 2021;10:e64567.

  55. Ueda S, Niwa M, Hioki H, Sohn J, Kaneko T, Sawa A, Sakurai T. Sequence of molecular events during the maturation of the developing mouse prefrontal cortex. Mol. Neuropsychiatry. 2015;1:94–104.

    PubMed Central  Google Scholar 

  56. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, et al. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron. 2010;65:480–9.

    Article  CAS  PubMed Central  Google Scholar 

  57. Leventhal MB, Morishita H. How childhood social isolation causes social dysfunction: deprivation or mismatch?. Trends Cogn. Sci. 2024;28:699–701.

    Article  Google Scholar 

  58. Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell. 2021;184:2794–5.

    Article  CAS  Google Scholar 

  59. Wiesel TN. Postnatal development of the visual cortex and the influence of environment. Nature. 1982;299:583–91.

    Article  CAS  Google Scholar 

  60. Hodges TE, Green MR, Simone JJ, McCormick CM. Effects of social context on endocrine function and Zif268 expression in response to an acute stressor in adolescent and adult rats. Int J. Dev. Neurosci. 2014;35:25–34.

    Article  CAS  Google Scholar 

  61. Hodges TE, McCormick CM. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity. Horm. Behav. 2015;69:16–30.

    Article  Google Scholar 

  62. Zhu X, Grace AA. Sex- and exposure age-dependent effects of adolescent stress on ventral tegmental area dopamine system and its afferent regulators. Mol. Psychiatry. 2023;28:611–24.

    Article  CAS  Google Scholar 

  63. Fuller JL, Clark LD. Genetic and treatment factors modifying the postisolation syndrome in dogs. J. Comp. Physiol. Psychol. 1966;61:251–7.

    Article  CAS  Google Scholar 

  64. Andreasen NC, Olsen S. Negative v positive schizophrenia. Definition and validation. Arch. Gen. Psychiatry. 1982;39:789–94.

    Article  CAS  Google Scholar 

  65. Kirkpatrick B, Fenton WS, Carpenter WT Jr, Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr. Bull. 2006;32:214–9.

    Article  PubMed Central  Google Scholar 

  66. Schenkel LS, Silverstein SM. Dimensions of premorbid functioning in schizophrenia: a review of neuromotor, cognitive, social, and behavioral domains. Genet Soc. Gen. Psychol. Monogr. 2004;130:241–70.

    Article  Google Scholar 

  67. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr. Res. 2009;110:1–23.

    Article  Google Scholar 

  68. Green MF, Horan WP, Lee J, McCleery A, Reddy LF, Wynn JK. Social Disconnection in Schizophrenia and the General Community. Schizophr. Bull. 2018;44:242–9.

    Article  Google Scholar 

  69. Fulford D, Campellone T, Gard DE. Social motivation in schizophrenia: How research on basic reward processes informs and limits our understanding. Clin. Psychol. Rev. 2018;63:12–24.

    Article  Google Scholar 

  70. Green MF, Horan WP, Lee J. Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry. 2019;18:146–61.

    Article  PubMed Central  Google Scholar 

  71. Catalano LT, Wynn JK, Green MF, Gold JM. Reduced neural activity when anticipating social versus nonsocial rewards in schizophrenia: Preliminary evidence from an ERP study. Schizophr. Res. 2022;246:7–16.

    Article  Google Scholar 

  72. Powell SB, Swerdlow NR. The relevance of animal models of social isolation and social motivation for understanding schizophrenia: review and future directions. Schizophr. Bull. 2023;49:1112–26.

    Article  PubMed Central  Google Scholar 

  73. Macdonald EM, Hayes RL, Baglioni AJ Jr. The quantity and quality of the social networks of young people with early psychosis compared with closely matched controls. Schizophr. Res. 2000;46:25–30.

    Article  CAS  Google Scholar 

  74. Buchanan RW. Persistent negative symptoms in schizophrenia: an overview. Schizophr. Bull. 2007;33:1013–22.

    Article  Google Scholar 

  75. Bleuler M, Bleuler R. Dementia praecox oder die Gruppe der Schizophrenien: Eugen Bleuler. Br. J. Psychiatry. 1986;149:661–2.

    Article  CAS  Google Scholar 

  76. K Conrad, Die beginnende Schizophrenie (G. Thieme, Stuttgart,, 1958), 165.

  77. E Kraepelin, RM Barclay, GM Robertson, Dementia præcox and paraphrenia (E. & S. Livingstone, Edinburgh, 1919), pp. 1 p. l., x. 331.

  78. E Minkowski, La schizophrénie; psychopathologie des schizoïdes et des schizophrènes, Bibliothèque scientifique (Payot, Paris, 1927), pp. 2 p[Cognitive remediation: a new approach for treating schizophrenia], Revue medicale de la Suisse romande, 2004, 124, -9 l., 268

  79. Bucci P, Galderisi S, Mucci A, Rossi A, Rocca P, Bertolino A, et al. Premorbid academic and social functioning in patients with schizophrenia and its associations with negative symptoms and cognition. Acta Psychiatr. Scand. 2018;138:253–66.

    Article  CAS  Google Scholar 

  80. Chau AKC, Zhu C, So SH. Loneliness and the psychosis continuum: a meta-analysis on positive psychotic experiences and a meta-analysis on negative psychotic experiences. Int Rev. Psychiatry. 2019;31:471–90.

    Article  Google Scholar 

  81. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc. Natl. Acad. Sci. USA. 1967;58:199–205.

    Article  CAS  PubMed Central  Google Scholar 

  82. Jonas KG, Lencz T, Li K, Malhotra AK, Perlman G, Fochtmann LJ, et al. Schizophrenia polygenic risk score and 20-year course of illness in psychotic disorders. Transl. Psychiatry. 2019;9:300.

    Article  PubMed Central  Google Scholar 

  83. Jones HJ, Stergiakouli E, Tansey KE, Hubbard L, Heron J, Cannon M, et al. Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry. 2016;73:221–8.

    Article  PubMed Central  Google Scholar 

  84. Lencz T, Knowles E, Davies G, Guha S, Liewald DC, Starr JM, et al. Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Mol. Psychiatry. 2014;19:168–74.

    Article  CAS  Google Scholar 

  85. Zammit S, Hamshere M, Dwyer S, Georgiva L, Timpson N, Moskvina V, et al. A population-based study of genetic variation and psychotic experiences in adolescents. Schizophr. Bull. 2014;40:1254–62.

    Article  Google Scholar 

  86. Abplanalp SJ, Green MF, Wynn JK, Eisenberger NI, Horan WP, Lee J, et al. Using machine learning to understand social isolation and loneliness in schizophrenia, bipolar disorder, and the community. Schizophrenia. 2024;10:88.

    Article  PubMed Central  Google Scholar 

  87. Socrates AJ, Mullins N, Gur RC, Gur RE, Stahl E, O'Reilly PF, et al. Polygenic risk of social isolation behavior and its influence on psychopathology and personality. Mol. Psychiatry. 2024;29:3599–606.

    Article  PubMed Central  Google Scholar 

  88. Andreu-Bernabeu Á, Díaz-Caneja CM, Costas J, De Hoyos L, Stella C, Gurriarán X, et al. Polygenic contribution to the relationship of loneliness and social isolation with schizophrenia. Nat. Commun. 2022;13:51.

    Article  CAS  PubMed Central  Google Scholar 

  89. Day FR, Ong KK, Perry JRB. Elucidating the genetic basis of social interaction and isolation. Nat. Commun. 2018;9:2457.

    Article  PubMed Central  Google Scholar 

  90. Brown AS. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 2011;93:23–58.

    Article  CAS  Google Scholar 

  91. Bhugra D. Migration and mental health. Acta Psychiatr. Scand. 2004;109:243–58.

    Article  CAS  Google Scholar 

  92. Malzberg B. Mental disease among foreign-born in Canada, 1950-2, in relation to period of immigration. Am. J. Psychiatry. 1964;120:971–3.

    Article  CAS  Google Scholar 

  93. Ø Ødegård, Emigration and insanity (Levin & Munksgaard, Copenhagen, 1932), 206.

  94. Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch. Gen. Psychiatry. 2001;58:1039–46.

    Article  CAS  Google Scholar 

  95. Ochnik D, Bulawa B, Nagel P, Gachowski M, Budzinski M. Urbanization, loneliness and mental health model - A cross-sectional network analysis with a representative sample. Sci. Rep. 2024;14:24974.

    Article  CAS  PubMed Central  Google Scholar 

  96. Ku BS, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Compton MT, et al. Associations between childhood area-level social fragmentation, maladaptation to school, and social functioning among healthy youth and those at clinical high risk for psychosis. Schizophr. Bull. 2023;49:1437–46.

    Article  PubMed Central  Google Scholar 

  97. McGlashan TH, Hoffman RE. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry. 2000;57:637–48.

    Article  CAS  Google Scholar 

  98. Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl. Psychiatry. 2015;5:e623.

    Article  CAS  PubMed Central  Google Scholar 

  99. Rapoport JL, Giedd JN, Blumenthal J, Hamburger S, Jeffries N, Fernandez T, et al. Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study. Arch. Gen. Psychiatry. 1999;56:649–54.

    Article  CAS  Google Scholar 

  100. Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S, et al. Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res. 2001;108:65–78.

    Article  CAS  PubMed Central  Google Scholar 

  101. Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A. Widespread cerebral gray matter volume deficits in schizophrenia. Arch. Gen. Psychiatry. 1992;49:195–205.

    Article  CAS  Google Scholar 

  102. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc. Natl. Acad. Sci. USA. 2001;98:11650–5.

    Article  CAS  PubMed Central  Google Scholar 

  103. Duncan LE, Li T, Salem M, Li W, Mortazavi L, Senturk H, et al. Mapping the cellular etiology of schizophrenia and complex brain phenotypes. Nat. Neurosci. 2025;28:248–58.

    Article  CAS  PubMed Central  Google Scholar 

  104. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry. 2015;72:882–91.

    Article  PubMed Central  Google Scholar 

  105. Gonzalez-Burgos G, Hashimoto T, Lewis DA. Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr. Psychiatry Rep. 2010;12:335–44.

    Article  PubMed Central  Google Scholar 

  106. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 2003;23:6315–26.

    Article  CAS  PubMed Central  Google Scholar 

  107. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr. Bull. 2012;38:950–7.

    Article  PubMed Central  Google Scholar 

  108. Dienel SJ, Dowling KF, Barile Z, Bazmi HH, Liu A, Vespoli JC, et al. Diagnostic specificity and association with cognition of molecular alterations in prefrontal Somatostatin neurons in schizophrenia. JAMA Psychiatry. 2023;80:1235–45.

    Article  PubMed Central  Google Scholar 

  109. Morris HM, Hashimoto T, Lewis DA. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb. Cortex. 2008;18:1575–87.

    Article  Google Scholar 

  110. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

    Article  CAS  PubMed Central  Google Scholar 

  111. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article  CAS  PubMed Central  Google Scholar 

  112. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharm. Rev. 2021;73:298–487.

    Article  PubMed Central  Google Scholar 

  113. Farsi Z, Nicolella A, Simmons SK, Aryal S, Shepard N, Brenner K, et al. Brain-region-specific changes in neurons and glia and dysregulation of dopamine signaling in Grin2a mutant mice. Neuron. 2023;111:3378–96 e3379.

    Article  CAS  Google Scholar 

  114. Mielnik CA, Binko MA, Chen Y, Funk AJ, Johansson EM, Intson K, et al. Consequences of NMDA receptor deficiency can be rescued in the adult brain. Mol. Psychiatry. 2021;26:2929–42.

    Article  CAS  Google Scholar 

  115. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 2010;13:76–83.

    Article  CAS  Google Scholar 

  116. Jiang Z, Rompala GR, Zhang S, Cowell RM, Nakazawa K. Social isolation exacerbates schizophrenia-like phenotypes via oxidative stress in cortical interneurons. Biol. Psychiatry. 2013;73:1024–34.

    Article  CAS  PubMed Central  Google Scholar 

  117. Oshima I, Mino Y, Inomata Y. Effects of environmental deprivation on negative symptoms of schizophrenia: a nationwide survey in Japan’s psychiatric hospitals. Psychiatry Res. 2005;136:163–71.

    Article  Google Scholar 

  118. Hoffman RE. A social deafferentation hypothesis for induction of active schizophrenia. Schizophr. Bull. 2007;33:1066–70.

    Article  PubMed Central  Google Scholar 

  119. Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375:482–4.

    Article  CAS  Google Scholar 

  120. McCrory E, Foulkes L, Viding E. Social thinning and stress generation after childhood maltreatment: a neurocognitive social transactional model of psychiatric vulnerability. Lancet Psychiatry. 2022;9:828–37.

    Article  Google Scholar 

  121. Miller P, Lawrie SM, Hodges A, Clafferty R, Cosway R, Johnstone EC. Genetic liability, illicit drug use, life stress and psychotic symptoms: preliminary findings from the Edinburgh study of people at high risk for schizophrenia. Soc. Psychiatry Psychiatr. Epidemiol. 2001;36:338–42.

    Article  CAS  Google Scholar 

  122. Serban G. Relationship of mental status, functioning and stress to readmission of schizophrenics. Br. J. Soc. Clin. Psychol. 1975;14:291–301.

    Article  CAS  Google Scholar 

  123. Chan S, Liu T, Wong A, Wong G, Hsiao J, Hui C, et al. Self-referential gaze perception of patients with schizophrenia and its relationship with symptomatology and cognitive functions. Schizophr. Res. 2021;228:288–94.

    Article  Google Scholar 

  124. Mancuso F, Horan WP, Kern RS, Green MF. Social cognition in psychosis: multidimensional structure, clinical correlates, and relationship with functional outcome. Schizophr. Res. 2011;125:143–51.

    Article  Google Scholar 

  125. Devoe DJ, Peterson A, Addington J. Negative symptom interventions in youth at risk of psychosis: a systematic review and network meta-analysis. Schizophr. Bull. 2018;44:807–23.

    Article  Google Scholar 

  126. Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, Chen H, et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry. 2015;2:403–12.

    Article  Google Scholar 

  127. Tseng PT, Zeng BS, Hung CM, Liang CS, Stubbs B, Carvalho AF, et al. Assessment of noninvasive brain stimulation interventions for negative symptoms of schizophrenia: a systematic review and network meta-analysis. JAMA Psychiatry. 2022;79:770–9.

    Article  PubMed Central  Google Scholar 

  128. Hadar R, Bikovski L, Soto-Montenegro ML, Schimke J, Maier P, Ewing S, et al. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia. Mol. Psychiatry. 2018;23:943–51.

    Article  CAS  Google Scholar 

  129. McGlashan TH, Zipursky RB, Perkins D, Addington J, Miller T, Woods SW, et al. Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am. J. Psychiatry. 2006;163:790–9.

    Article  Google Scholar 

  130. McGorry PD, Yung AR, Phillips LJ, Yuen HP, Francey S, Cosgrave EM, et al. Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Arch. Gen. Psychiatry. 2002;59:921–8.

    Article  Google Scholar 

  131. Cornblatt BA, Lencz T, Smith CW, Olsen R, Auther AM, Nakayama E, et al. Can antidepressants be used to treat the schizophrenia prodrome? Results of a prospective, naturalistic treatment study of adolescents. J. Clin. Psychiatry. 2007;68:546–57.

    Article  CAS  Google Scholar 

  132. Schmidt SJ, Schultze-Lutter F, Schimmelmann BG, Maric NP, Salokangas RK, Riecher-Rössler A, et al. EPA guidance on the early intervention in clinical high risk states of psychoses. Eur. Psychiatry. 2015;30:388–404.

    Article  CAS  Google Scholar 

  133. Antal A, Fischer T, Saiote C, Miller R, Chaieb L, Wang DJ, et al. Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure. Hum. Brain Mapp. 2014;35:3750–9.

    Article  Google Scholar 

  134. Craig TK, Rus-Calafell M, Ward T, Leff JP, Huckvale M, Howarth E, et al. AVATAR therapy for auditory verbal hallucinations in people with psychosis: a single-blind, randomised controlled trial. Lancet Psychiatry. 2018;5:31–40.

    Article  PubMed Central  Google Scholar 

  135. Percie du Sert O, Potvin S, Lipp O, Dellazizzo L, Laurelli M, Breton R, et al. Virtual reality therapy for refractory auditory verbal hallucinations in schizophrenia: A pilot clinical trial. Schizophr. Res. 2018;197:176–81.

    Article  Google Scholar 

  136. Okuyama T. Social memory engram in the hippocampus. Neurosci. Res. 2018;129:17–23.

    Article  Google Scholar 

  137. Smith AS, Williams Avram SK, Cymerblit-Sabba A, Song J, Young WS. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry. 2016;21:1137–44.

    Article  CAS  PubMed Central  Google Scholar 

  138. Sun Q, Li X, Li A, Zhang J, Ding Z, Gong H, Luo Q. Ventral hippocampal-prefrontal interaction affects social behavior via parvalbumin positive neurons in the medial prefrontal cortex. iScience. 2020;23:100894.

    Article  CAS  PubMed Central  Google Scholar 

  139. Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, et al. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron. 2024;112:611–27 e618.

    Article  CAS  Google Scholar 

  140. N Rigney, GJ de Vries, A Petrulis, LJ Young, Oxytocin, Vasopressin, and social behavior: from neural circuits to clinical opportunities. Endocrinology. 2022;163:bqac111.

  141. Tan Y, Singhal SM, Harden SW, Cahill KM, Nguyen DM, Colon-Perez LM, et al. Oxytocin receptors are expressed by glutamatergic prefrontal cortical neurons that selectively modulate social recognition. J. Neurosci. 2019;39:3249–63.

    Article  CAS  PubMed Central  Google Scholar 

  142. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  Google Scholar 

  143. DJ Christoffel, JJ Walsh, P Hoerbelt, BD Heifets, P Llorach, RC Lopez, et al. Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. Proc. Natl Acad. Sci. USA. 2021:118:e2106648118.

  144. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience. 2016;321:197–209.

    Article  CAS  Google Scholar 

  145. Kim H, Lim CS, Kaang BK. Neuronal mechanisms and circuits underlying repetitive behaviors in mouse models of autism spectrum disorder. Behav. Brain Funct. 2016;12:3.

    Article  PubMed Central  Google Scholar 

  146. Cao P, Liu Y, Ni Z, Zhang M, Wei HR, Liu A, et al. Rescue-like behavior in a bystander mouse toward anesthetized conspecifics promotes arousal via a tongue-brain connection. Sci. Adv. 2025;11:eadq3874.

    Article  CAS  PubMed Central  Google Scholar 

  147. Dai B, Sun F, Tong X, Ding Y, Kuang A, Osakada T, et al. Responses and functions of dopamine in nucleus accumbens core during social behaviors. Cell Rep. 2022;40:111246.

    Article  CAS  PubMed Central  Google Scholar 

  148. Terranova JI, Yokose J, Osanai H, Marks WD, Yamamoto J, Ogawa SK, Kitamura T. Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron. 2022;110:1416–31.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Mental Health: R01MH118297 to Hirofumi Morishita and F31MH127805 to Michael B. Leventhal, National Institute on Drug Abuse: R34DA061263 to Hirofumi Morishita, the Simons Foundation/SFARI (grant no. 610850) to Hirofumi Morishita, and the Heiwa Nakajima Foundation to Ayako Kawatake-Kuno.

Author information

Authors and Affiliations

Authors

Contributions

Ayako Kawatake-Kuno, Michael B. Leventhal, and Hirofumi Morishita conceptualized the research goals and aims of this manuscript. Ayako Kawatake-Kuno and Michael B. Leventhal curated and analyzed references used to inform this manuscript, with help from Hirofumi Morishita acquired funding to write this manuscript. Hirofumi Morishita supervised this project. Visualizations were created by Ayako Kawatake-Kuno and Michael B. Leventhal revised with feedback from Hirofumi Morishita. The original draft of this manuscript was produced by Ayako Kawatake-Kuno and Michael B. Leventhal. The manuscript was reviewed and edited by all authors.

Corresponding author

Correspondence to Hirofumi Morishita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawatake-Kuno, A., Leventhal, M.B. & Morishita, H. Impact of early social isolation on social circuits and behavior: relevance to schizophrenia. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02156-6

This article is cited by

Search

Quick links