Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microglia as critical mediators linking perinatal immune stress to mental health trajectories

Abstract

Neurodevelopmental and neuropsychiatric disorders that emerge in childhood (such as autism) and adolescence (such as depression and schizophrenia) currently lack broadly effective therapies, underlying an urgent need to better understand their etiology. While each disorder has its own set of complex genetic and environmental risk factors, perinatal exposure to intense immune activation and/or stress has been linked to increased disease risk. Microglia, the resident immune cells of the brain, are impacted in each disorder and exquisitely sensitive to early life experience. Here, we review the literature suggesting microglia-specific changes in response to early life immune activation and/or stress with an emphasis on microglial interactions with neural synapses and circuits. We also review the existing literature linking these findings to microglia-specific changes in the brain in autism, depression, and schizophrenia. Our goal is to bridge the gap between developmental insults and the subsequent pathogenesis of these disorders, highlighting key areas for future mechanistic work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified comparison of the effects of pre- and postnatal immune activation and stress on microglial morphology and interactions with neurons.
Fig. 2: Perinatal insults impact microglial biology across development.

Similar content being viewed by others

References

  1. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Z, Wu Z, Wang H, Feng R, Wang G, Li M, et al. An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development. Cell. 2023;186:4454–71.e19.

    Article  CAS  PubMed  Google Scholar 

  3. Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol. 2015;6:486.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18:391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Penati S, Brioschi S, Cai Z, Han CZ, Colonna M. Mechanisms and environmental factors shaping the ecosystem of brain macrophages. Front Immunol. 2025;16:1539988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paolicelli RC, Sierra A, Stevens B, Tremblay M-E, Aguzzi A, Ajami B, et al. Microglia states and nomenclature: a field at its crossroads. Neuron. 2022;110:3458–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.

    Article  CAS  PubMed  Google Scholar 

  8. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci J Soc Neurosci. 2009;29:3974–80.

    Article  CAS  Google Scholar 

  10. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  11. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scott-Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 2020;39:e105380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernández-Otero M, et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell. 2021;184:5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pereira-Iglesias M, Maldonado-Teixido J, Melero A, Piriz J, Galea E, Ransohoff RM, et al. Microglia as hunters or gatherers of brain synapses. Nat Neurosci. 2025;28:15–23.

    Article  CAS  PubMed  Google Scholar 

  15. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kopec AM, Smith CJ, Ayre NR, Sweat SC, Bilbo SD. Microglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat Commun. 2018;9:3769.

    Article  PubMed  PubMed Central  Google Scholar 

  17. VanRyzin JW, Marquardt AE, Argue KJ, Vecchiarelli HA, Ashton SE, Arambula SE, et al. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron. 2022;110:1271.

    Article  CAS  PubMed  Google Scholar 

  18. Arnò B, Grassivaro F, Rossi C, Bergamaschi A, Castiglioni V, Furlan R, et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun. 2014;5:5611.

    Article  PubMed  Google Scholar 

  19. Hetier E, Ayala J, Denèfle P, Bousseau A, Rouget P, Mallat M, et al. Brain macrophages synthesize interleukin‐1 and interleukin‐1 mRNAs in vitro. J Neurosci Res. 1988;21:391–7.

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell. 2020;182:388–403.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018;359:1269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eyo U, Molofsky AV. Defining microglial-synapse interactions. Science. 2023;381:1155–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kwon H-K, Choi GB, Huh JR. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol. 2022;43:230–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim E, Huh JR, Choi GB. Prenatal and postnatal neuroimmune interactions in neurodevelopmental disorders. Nat Immunol. 2024;25:598–606.

    Article  CAS  PubMed  Google Scholar 

  25. Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33:267–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry. 2004;61:774–80.

    Article  PubMed  Google Scholar 

  27. Cannon M, Cotter D, Coffey VP, Sham PC, Takei N, Larkin C, et al. Prenatal exposure to the 1957 influenza epidemic and adult schizophrenia: a follow-up study. Br J Psychiatry. 1996;168:368–71.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang H, Xu L, Shao L, Xia R, Yu Z, Ling Z, et al. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav Immun. 2016;58:165–72.

    Article  PubMed  Google Scholar 

  29. Estes ML, McAllister AK. Maternal immune activation: implications for neuropsychiatric disorders. Science. 2016;353:772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smail MA, Lenz KM. Developmental functions of microglia: Impact of psychosocial and physiological early life stress. Neuropharmacology. 2024;258:110084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sequeira MK, Bolton JL. Stressed microglia: neuroendocrine–neuroimmune interactions in the stress response. Endocrinology. 2023;164:bqad088.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hartmann S-M, Heider J, Wüst R, Fallgatter AJ, Volkmer H. Microglia-neuron interactions in schizophrenia. Front Cell Neurosci. 2024;18:1345349.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lukens JR, Eyo UB. Microglia and neurodevelopmental disorders. Annu Rev Neurosci. 2022;45:425–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeiss CJ. Comparative milestones in rodent and human postnatal central nervous system development. Toxicol Pathol. 2021;49:1368–73.

    Article  PubMed  Google Scholar 

  35. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem. 2012;120:948–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell. 2019;179:1609–22.e16.

    Article  CAS  PubMed  Google Scholar 

  37. Otero AM, Antonson AM. At the crux of maternal immune activation: viruses, microglia, microbes, and IL‐17A. Immunol Rev. 2022;311:205–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Loewen SM, Chavesa AM, Murray CJ, Traetta ME, Burns SE, Pekarik KH, et al. The outcomes of maternal immune activation induced with the viral mimetic poly I:C on microglia in exposed rodent offspring. Dev Neurosci. 2023;45:191–209.

    Article  CAS  PubMed  Google Scholar 

  39. Mastenbroek LJM, Kooistra SM, Eggen BJL, Prins JR. The role of microglia in early neurodevelopment and the effects of maternal immune activation. Semin Immunopathol. 2024;46:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tagliatti E, Bizzotto M, Morini R, Filipello F, Rasile M, Matteoli M. Prenatal drivers of microglia vulnerability in the adult. Immunol Rev. 2024;327:100–10.

    Article  CAS  PubMed  Google Scholar 

  41. Loayza M, Lin S, Carter K, Ojeda N, Fan L-W, Ramarao S, et al. Maternal immune activation alters fetal and neonatal microglia phenotype and disrupts neurogenesis in mice. Pediatr Res. 2023;93:1216–25.

    Article  CAS  PubMed  Google Scholar 

  42. Fernández de Cossío L, Guzmán A, van der Veldt S, Luheshi GN. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav Immun. 2017;63:88–98.

    Article  PubMed  Google Scholar 

  43. Fernández de Cossío L, Lacabanne C, Bordeleau M, Castino G, Kyriakakis P, Tremblay M-È. Lipopolysaccharide-induced maternal immune activation modulates microglial CX3CR1 protein expression and morphological phenotype in the hippocampus and dentate gyrus, resulting in cognitive inflexibility during late adolescence. Brain Behav Immun. 2021;97:440–54.

    Article  PubMed  Google Scholar 

  44. O’Loughlin E, Pakan JMP, Yilmazer-Hanke D, McDermott KW. Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J Neuroinflammation. 2017;14:212.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schaafsma W, Basterra LB, Jacobs S, Brouwer N, Meerlo P, Schaafsma A, et al. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol Dis. 2017;106:291–300.

    Article  CAS  PubMed  Google Scholar 

  46. Antonson AM, Lawson MA, Caputo MP, Matt SM, Leyshon BJ, Johnson RW. Maternal viral infection causes global alterations in porcine fetal microglia. Proc Natl Acad Sci USA. 2019;116:20190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otero AM, Connolly MG, Gonzalez-Ricon RJ, Wang SS, Allen JM, Antonson AM. Influenza A virus during pregnancy disrupts maternal intestinal immunity and fetal cortical development in a dose- and time-dependent manner. Mol Psychiatry. 2025;30:13–28.

    Article  CAS  PubMed  Google Scholar 

  48. Smolders S, Smolders SMT, Swinnen N, Gärtner A, Rigo J-M, Legendre P, et al. Maternal immune activation evoked by polyinosinic: polycytidylic acid does not evoke microglial cell activation in the embryo. Front Cell Neurosci. 2015;9:301.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paylor JW, Lins BR, Greba Q, Moen N, de Moraes RS, Howland JG, et al. Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation. Sci Rep. 2016;6:37580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav Immun. 2016;55:25–38.

    Article  CAS  PubMed  Google Scholar 

  51. Zengeler KE, Shapiro DA, Bruch KR, Lammert CR, Ennerfelt H, Lukens JR. SSRI treatment modifies the effects of maternal inflammation on in utero physiology and offspring neurobiology. Brain Behav Immun. 2023;108:80–97.

    Article  CAS  PubMed  Google Scholar 

  52. Miller VM, Zhu Y, Bucher C, McGinnis W, Ryan LK, Siegel A, et al. Gestational flu exposure induces changes in neurochemicals, affiliative hormones and brainstem inflammation, in addition to autism-like behaviors in mice. Brain Behav Immun. 2013;33:153–63.

    Article  CAS  PubMed  Google Scholar 

  53. Van den Eynde K, Missault S, Fransen E, Raeymaekers L, Willems R, Drinkenburg W, et al. Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behav Brain Res. 2014;258:179–86.

    Article  PubMed  Google Scholar 

  54. Yan S, Wang L, Samsom JN, Ujic D, Liu F. PolyI:C maternal immune activation on E9.5 causes the deregulation of microglia and the complement system in mice, leading to decreased synaptic spine density. Int J Mol Sci. 2024;25:5480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hui CW, Vecchiarelli HA, Gervais É, Luo X, Michaud F, Scheefhals L, et al. Sex differences of microglia and synapses in the hippocampal dentate gyrus of adult mouse offspring exposed to maternal immune activation. Front Cell Neurosci. 2020;14:558181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikezu S, Yeh H, Delpech J-C, Woodbury ME, Van Enoo AA, Ruan Z, et al. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol Psychiatry. 2021;26:1808–31.

    Article  CAS  PubMed  Google Scholar 

  57. Ozaki K, Kato D, Ikegami A, Hashimoto A, Sugio S, Guo Z, et al. Maternal immune activation induces sustained changes in fetal microglia motility. Sci Rep. 2020;10:21378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mattei D, Ivanov A, Ferrai C, Jordan P, Guneykaya D, Buonfiglioli A, et al. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry. 2017;7:e1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science. 2016;353:aad8670.

    Article  PubMed  Google Scholar 

  60. Ostrem BEL, Domínguez-Iturza N, Stogsdill JA, Faits T, Kim K, Levin JZ, et al. Fetal brain response to maternal inflammation requires microglia. Dev Camb Engl. 2024;151:dev202252.

    Google Scholar 

  61. Hayes LN, An K, Carloni E, Li F, Vincent E, Trippaers C, et al. Prenatal immune stress blunts microglia reactivity, impairing neurocircuitry. Nature. 2022;610:327–34.

    Article  CAS  PubMed  Google Scholar 

  62. Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton KE, Ashwood P. Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. J Neuroinflammation. 2023;20:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Church JS, Tamayo JM, Ashwood P, Schwartzer JJ. Repeated allergic asthma in early versus late pregnancy differentially impacts offspring brain and behavior development. Brain Behav Immun. 2021;93:66–79.

    Article  CAS  PubMed  Google Scholar 

  64. Schwartzer JJ, Careaga M, Chang C, Onore CE, Ashwood P. Allergic fetal priming leads to developmental, behavioral and neurobiological changes in mice. Transl Psychiatry. 2015;5:e543–e543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vogel Ciernia A, Careaga M, LaSalle JM, Ashwood P. Microglia from offspring of dams with allergic asthma exhibit epigenomic alterations in genes dysregulated in autism. Glia. 2018;66:505–21.

    Article  PubMed  Google Scholar 

  66. Chen HJ, Galley JD, Verosky BG, Yang FT, Rajasekera TA, Bailey MT, et al. Fetal CCL2 signaling mediates offspring social behavior and recapitulates effects of prenatal stress. Brain Behav Immun. 2024;115:308–18.

    Article  CAS  PubMed  Google Scholar 

  67. Bittle J, Stevens HE. The role of glucocorticoid, interleukin-1β, and antioxidants in prenatal stress effects on embryonic microglia. J Neuroinflammation. 2018;15:44.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gur TL, Shay L, Palkar AV, Fisher S, Varaljay VA, Dowd S, et al. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav Immun. 2017;64:50–58.

    Article  CAS  PubMed  Google Scholar 

  69. Suwaluk A, Chutabhakdikul N. Long-term effects of prenatal stress on the development of prefrontal cortex in the adolescent offspring. J Chem Neuroanat. 2022;125:102169.

    Article  CAS  PubMed  Google Scholar 

  70. Ślusarczyk J, Trojan E, Głombik K, Budziszewska B, Kubera M, Lasoń W, et al. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gómez-González B, Escobar A. Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol. 2010;119:303–15.

    Article  PubMed  Google Scholar 

  72. Orso R, Creutzberg KC, Lumertz FS, Kestering-Ferreira E, Stocchero BA, Perrone MK, et al. A systematic review and multilevel meta-analysis of the prenatal and early life stress effects on rodent microglia, astrocyte, and oligodendrocyte density and morphology. Neurosci Biobehav Rev. 2023;150:105202.

    Article  PubMed  Google Scholar 

  73. Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation. 2012;9:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gumusoglu SB, Fine RS, Murray SJ, Bittle JL, Stevens HE. The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun. 2017;65:274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caetano L, Pinheiro H, Patrício P, Mateus-Pinheiro A, Alves ND, Coimbra B, et al. Adenosine A2A receptor regulation of microglia morphological remodeling-gender bias in physiology and in a model of chronic anxiety. Mol Psychiatry. 2017;22:1035–43.

    Article  CAS  PubMed  Google Scholar 

  76. Duarte JM, Gaspar R, Caetano L, Patrício P, Soares-Cunha C, Mateus-Pinheiro A, et al. Region-specific control of microglia by adenosine A2A receptors: uncoupling anxiety and associated cognitive deficits in female rats. Glia. 2019;67:182–92.

    Article  PubMed  Google Scholar 

  77. Rosin JM, Sinha S, Biernaskie J, Kurrasch DM. A subpopulation of embryonic microglia respond to maternal stress and influence nearby neural progenitors. Dev Cell. 2021;56:1326–45.e6.

    Article  CAS  PubMed  Google Scholar 

  78. Niu Y, Wang T, Liang S, Li W, Hu X, Wu X, et al. Sex‐dependent aberrant PFC development in the adolescent offspring rats exposed to variable prenatal stress. Int J Dev Neurosci. 2020;80:464–76.

    Article  CAS  PubMed  Google Scholar 

  79. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2016;21:642–9.

    Article  CAS  PubMed  Google Scholar 

  80. Aas M, Dieset I, Hope S, Hoseth E, Mørch R, Reponen E, et al. Childhood maltreatment severity is associated with elevated C-reactive protein and body mass index in adults with schizophrenia and bipolar diagnoses. Brain Behav Immun. 2017;65:342–9.

    Article  CAS  PubMed  Google Scholar 

  81. Grosse L, Ambrée O, Jörgens S, Jawahar MC, Singhal G, Stacey D, et al. Cytokine levels in major depression are related to childhood trauma but not to recent stressors. Psychoneuroendocrinology. 2016;73:24–31.

    Article  CAS  PubMed  Google Scholar 

  82. Mondelli V, Vernon AC. From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clin Exp Immunol. 2019;197:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meltzer A, Van de Water J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 2017;42:284–98.

    Article  CAS  PubMed  Google Scholar 

  84. Snyder-Keller A, Kramer LD, Zink S, Bolivar VJ. Mouse strain and sex-dependent differences in long-term behavioral abnormalities and neuropathologies after developmental zika infection. J Neurosci. 2019;39:5393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ji P, Schachtschneider KM, Schook LB, Walker FR, Johnson RW. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets. Brain Behav Immun. 2016;54:243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guha SK, Sarkar I, Patgaonkar M, Banerjee S, Mukhopadhyay S, Sharma S, et al. A history of juvenile mild malaria exacerbates chronic stress-evoked anxiety-like behavior, neuroinflammation, and decline of adult hippocampal neurogenesis in mice. J Neuroimmunol. 2020;348:577363.

    Article  CAS  PubMed  Google Scholar 

  87. Bland ST, Beckley JT, Young S, Tsang V, Watkins LR, Maier SF, et al. Enduring consequences of early-life infection on glial and neural cell genesis within cognitive regions of the brain. Brain Behav Immun. 2010;24:329–38.

    Article  PubMed  Google Scholar 

  88. Smith PLP, Hagberg H, Naylor AS, Mallard C. Neonatal peripheral immune challenge activates microglia and inhibits neurogenesis in the developing murine hippocampus. Dev Neurosci. 2014;36:119–31.

    Article  CAS  PubMed  Google Scholar 

  89. Pang Y, Dai X, Roller A, Carter K, Paul I, Bhatt AJ, et al. Early postnatal lipopolysaccharide exposure leads to enhanced neurogenesis and impaired communicative functions in rats. PLoS ONE. 2016;11:e0164403.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Berkiks I, Mesfioui A, Ouichou A, Nakache R, Ajonijebu DC, El Hessni A. Affective behavior shows sex differences in mid-adulthood rats following postnatal immune stimulation. Neuroscience. 2019;421:69–81.

    Article  CAS  PubMed  Google Scholar 

  91. Cao P, Chen C, Liu A, Shan Q, Zhu X, Jia C, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109:2573–89.e9.

    Article  CAS  PubMed  Google Scholar 

  92. Frost PS, Barros-Aragão F, Da Silva RT, Venancio A, Matias I, Lyra E Silva NM, et al. Neonatal infection leads to increased susceptibility to Aβ oligomer-induced brain inflammation, synapse loss and cognitive impairment in mice. Cell Death Dis. 2019;10:323.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hennessey C, Keogh CE, Barboza M, Brust-Mascher I, Knotts TA, Sladek JA, et al. Neonatal enteropathogenic escherichia coli infection disrupts microbiota-gut-brain axis signaling. Infect Immun. 2021;89:e00059-21.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Williamson LL, McKenney EA, Holzknecht ZE, Belliveau C, Rawls JF, Poulton S, et al. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav Immun. 2016;51:14–28.

    Article  CAS  PubMed  Google Scholar 

  95. Bilbo SD. Early-life infection is a vulnerability factor for aging-related glial alterations and cognitive decline. Neurobiol Learn Mem. 2010;94:57–64.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wu X, Ji M, Yin X, Gu H, Zhu T, Wang R, et al. Reduced inhibition underlies early life LPS exposure induced-cognitive impairment: Prevention by environmental enrichment. Int Immunopharmacol. 2022;108:108724.

    Article  CAS  PubMed  Google Scholar 

  97. Jiang J, Tang B, Wang L, Huo Q, Tan S, Misrani A, et al. Systemic LPS-induced microglial activation results in increased GABAergic tone: a mechanism of protection against neuroinflammation in the medial prefrontal cortex in mice. Brain Behav Immun. 2022;99:53–69.

    Article  CAS  PubMed  Google Scholar 

  98. Elmore MRP, Burton MD, Conrad MS, Rytych JL, Van Alstine WG, Johnson RW. Respiratory viral infection in neonatal piglets causes marked microglia activation in the hippocampus and deficits in spatial learning. J Neurosci. 2014;34:2120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Osborne BF, Beamish SB, Schwarz JM. The effects of early-life immune activation on microglia-mediated neuronal remodeling and the associated ontogeny of hippocampal-dependent learning in juvenile rats. Brain Behav Immun. 2021;96:239–55.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bordt EA, Moya HA, Jo YC, Ravichandran CT, Bankowski IM, Ceasrine AM, et al. Gonadal hormones impart male-biased behavioral vulnerabilities to immune activation via microglial mitochondrial function. Brain Behav Immun. 2024;115:680–95.

    Article  CAS  PubMed  Google Scholar 

  101. O’Neill E, Curham L, Ní Chasaide C, O’Brien S, McManus G, Moran B, et al. Neonatal infection with Bordetella pertussis promotes autism-like phenotypes in mice. iScience. 2025;28:111548.

    Article  PubMed  Google Scholar 

  102. Ahmed S, Polis B, Kaffman A. Microglia: the drunken gardeners of early adversity. Biomolecules. 2024;14:964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brenhouse HC, Danese A, Grassi-Oliveira R. Neuroimmune impacts of early-life stress on development and psychopathology. Curr Top Behav Neurosci. 2019;43:423–47.

    Article  CAS  PubMed  Google Scholar 

  104. Roque A, Ochoa-Zarzosa A, Torner L. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels. Brain Behav Immun. 2016;55:39–48.

    Article  CAS  PubMed  Google Scholar 

  105. Delpech J-C, Wei L, Hao J, Yu X, Madore C, Butovsky O, et al. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun. 2016;57:79–93.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:104–17.

    Article  CAS  PubMed  Google Scholar 

  107. Gong Y, Tong L, Yang R, Hu W, Xu X, Wang W, et al. Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation. Neuropharmacology. 2018;135:223–33.

    Article  CAS  PubMed  Google Scholar 

  108. Saavedra LM, Fenton Navarro B, Torner L. Early life stress activates glial cells in the hippocampus but attenuates cytokine secretion in response to an immune challenge in rat pups. Neuroimmunomodulation. 2017;24:242–55.

    Article  CAS  PubMed  Google Scholar 

  109. Reemst K, Kracht L, Kotah JM, Rahimian R, Van Irsen AAS, Congrains Sotomayor G, et al. Early-life stress lastingly impacts microglial transcriptome and function under basal and immune-challenged conditions. Transl Psychiatry. 2022;12:507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Takatsuru Y, Nabekura J, Ishikawa T, Kohsaka S, Koibuchi N. Early-life stress increases the motility of microglia in adulthood. J Physiol Sci. 2015;65:187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ferle V, Repouskou A, Aspiotis G, Raftogianni A, Chrousos G, Stylianopoulou F, et al. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. Physiol Behav. 2020;215:112791.

    Article  CAS  PubMed  Google Scholar 

  112. Guerrin CGJ, Prasad K, Vazquez-Matias DA, Zheng J, Franquesa-Mullerat M, Barazzuol L, et al. Prenatal infection and adolescent social adversity affect microglia, synaptic density, and behavior in male rats. Neurobiol Stress. 2023;27:100580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zetter MA, Hernández VS, Roque A, Hernández‐Pérez OR, Gómora MJ, Ruiz‐Velasco S, et al. Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of early‐life stress and consequences for adult fear response. J Neuroendocrinol. 2021;33:e12969.

    Article  CAS  PubMed  Google Scholar 

  114. Dayananda KK, Ahmed S, Wang D, Polis B, Islam R, Kaffman A. Early life stress impairs synaptic pruning in the developing hippocampus. Brain Behav Immun. 2023;107:16–31.

    Article  PubMed  Google Scholar 

  115. Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, et al. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep. 2022;38:110600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahmed S, Polis B, Jamwal S, Sanganahalli BG, MacDowell Kaswan Z, Islam R, et al. Transient impairment in microglial function causes sex-specific deficits in synaptic maturity and hippocampal function in mice exposed to early adversity. Brain Behav Immun. 2024;122:95–109.

    Article  CAS  PubMed  Google Scholar 

  117. Thom RP, Keary CJ, Palumbo ML, Ravichandran CT, Mullett JE, Hazen EP, et al. Beyond the brain: a multi-system inflammatory subtype of autism spectrum disorder. Psychopharmacology. 2019;236:3045–61.

    Article  CAS  PubMed  Google Scholar 

  118. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Klein HC, Guest PC, Dobrowolny H, Steiner J. Inflammation and viral infection as disease modifiers in schizophrenia. Front Psychiatry. 2023;14:1231750.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hughes HK, R.J.Moreno, Ashwood P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav Immun. 2023;108:245–54.

    Article  CAS  PubMed  Google Scholar 

  121. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry. 2013;70:49–58.

    Article  PubMed  Google Scholar 

  122. Simpson D, Gharehgazlou A, Da Silva T, Labrie-Cleary C, Wilson AA, Meyer JH, et al. In vivo imaging translocator protein (TSPO) in autism spectrum disorder. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2022;47:1421–7.

    Article  CAS  Google Scholar 

  123. Liao X, Chen M, Li Y. The glial perspective of autism spectrum disorder convergent evidence from postmortem brain and PET studies. Front Neuroendocrinol. 2023;70:101064.

    Article  CAS  PubMed  Google Scholar 

  124. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010;68:368–76.

    Article  PubMed  Google Scholar 

  125. Morgan JT, Chana G, Abramson I, Semendeferi K, Courchesne E, Everall IP. Abnormal microglial–neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res. 2012;1456:72–81.

    Article  CAS  PubMed  Google Scholar 

  126. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the cerebral cortex in autism. J Autism Dev Disord. 2012;42:2569–84.

    Article  PubMed  Google Scholar 

  127. Young AMH, Campbell E, Lynch S, Suckling J, Powis SJ. Aberrant NF-kappaB expression in autism spectrum condition: a mechanism for neuroinflammation. Front Psychiatry. 2011;2:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 2014;5:5748.

    Article  CAS  PubMed  Google Scholar 

  130. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature. 2016;540:423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rahman MR, Petralia MC, Ciurleo R, Bramanti A, Fagone P, Shahjaman M, et al. Comprehensive analysis of RNA-seq gene expression profiling of brain transcriptomes reveals novel genes, regulators, and pathways in autism spectrum disorder. Brain Sci. 2020;10:747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dias C, Mo A, Cai C, Sun L, Cabral K, Brownstein CA, et al. Cell-type-specific effects of autism-associated 15q duplication syndrome in the human brain. Am J Hum Genet. 2024;111:1544–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry. 2014;19:862–71.

    Article  CAS  PubMed  Google Scholar 

  135. Vogel Ciernia A, Laufer BI, Hwang H, Dunaway KW, Mordaunt CE, Coulson RL, et al. Epigenomic convergence of neural-immune risk factors in neurodevelopmental disorder cortex. Cereb Cortex. 2020;30:640–55.

    Article  CAS  PubMed  Google Scholar 

  136. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell genomics identifies cell-type-specific molecular changes in autism. Science. 2019;364:685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wamsley B, Bicks L, Cheng Y, Kawaguchi R, Quintero D, Margolis M, et al. Molecular cascades and cell type-specific signatures in ASD revealed by single-cell genomics. Science. 2024;384:eadh2602.

    Article  PubMed  Google Scholar 

  138. Yap CX, Vo DD, Heffel MG, Bhattacharya A, Wen C, Yang Y, et al. Brain cell-type shifts in Alzheimer’s disease, autism, and schizophrenia interrogated using methylomics and genetics. Sci Adv. 2024;10:eadn7655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett. 1999;271:126–8.

    Article  CAS  PubMed  Google Scholar 

  140. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.

    Article  PubMed  Google Scholar 

  141. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–59.

    Article  CAS  PubMed  Google Scholar 

  142. Eggerstorfer B, Kim J-H, Cumming P, Lanzenberger R, Gryglewski G. Meta-analysis of molecular imaging of translocator protein in major depression. Front Mol Neurosci. 2022;15:981442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Böttcher C, Fernández-Zapata C, Snijders GJL, Schlickeiser S, Sneeboer MAM, Kunkel D, et al. Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl Psychiatry. 2020;10:310.

    Article  PubMed  PubMed Central  Google Scholar 

  144. De Witte LD, Wang Z, Snijders GLJL, Mendelev N, Liu Q, Sneeboer MAM, et al. Contribution of age, brain region, mood disorder pathology, and interindividual factors on the methylome of human microglia. Biol Psychiatry. 2022;91:572–81.

    Article  PubMed  Google Scholar 

  145. Scheepstra KWF, Mizee MR, Van Scheppingen J, Adelia A, Wever DD, Mason MRJ, et al. Microglia transcriptional profiling in major depressive disorder shows inhibition of cortical gray matter microglia. Biol Psychiatry. 2023;94:619–29.

    Article  CAS  PubMed  Google Scholar 

  146. Nagy C, Maitra M, Tanti A, Suderman M, Théroux J-F, Davoli MA, et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat Neurosci. 2020;23:771–81.

    Article  CAS  PubMed  Google Scholar 

  147. Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, et al. Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun. 2023;14:2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grommes C, Lee CYD, Wilkinson BL, Jiang Q, Koenigsknecht-Talboo JL, Varnum B, et al. Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the axl/mer family of tyrosine kinases. J Neuroimmune Pharmacol. 2008;3:130–40.

    Article  PubMed  Google Scholar 

  149. Belliveau C, Rahimian R, Fakhfouri G, Hosdey C, Simard S, Davoli MA, et al. Evidence of microglial involvement in the childhood abuse-associated increase in perineuronal nets in the ventromedial prefrontal cortex. Brain Behav Immun. 2025;124:321–34.

    Article  PubMed  Google Scholar 

  150. Snijders GJLJ, Van Zuiden W, Sneeboer MAM, Berdenis Van Berlekom A, Van Der Geest AT, Schnieder T, et al. A loss of mature microglial markers without immune activation in schizophrenia. Glia. 2021;69:1251–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gober R, Ardalan M, Shiadeh SMJ, Duque L, Garamszegi SP, Ascona M, et al. Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions. Brain Pathol. 2022;32:e13003.

    Article  PubMed  Google Scholar 

  152. Plavén-Sigray P, Matheson GJ, Coughlin JM, Hafizi S, Laurikainen H, Ottoy J, et al. Meta-analysis of the glial marker TSPO in psychosis revisited: reconciling inconclusive findings of patient–control differences. Biol Psychiatry. 2021;89:e5–e8.

    Article  PubMed  Google Scholar 

  153. Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry. 2023;13:386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Dystrophy of oligodendrocytes and adjacent microglia in prefrontal gray matter in schizophrenia. Front Psychiatry. 2020;11:204.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Uranova NA, Vikhreva OV, Rakhmanova VI. Abnormal microglial reactivity in gray matter of the prefrontal cortex in schizophrenia. Asian J Psychiatry. 2021;63:102752.

    Article  CAS  Google Scholar 

  156. Uranova NA, Vikhreva OV, Rakhmanova VI. Microglia-neuron interactions in prefrontal gray matter in schizophrenia: a postmortem ultrastructural morphometric study. Eur Arch Psychiatry Clin Neurosci. 2023;273:1633–48.

    Article  CAS  PubMed  Google Scholar 

  157. Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, et al. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun. 2019;10:3215.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Surala M, Soso-Zdravkovic L, Munro D, Rifat A, Ouk K, Vida I, et al. Lifelong absence of microglia alters hippocampal glutamatergic networks but not synapse and spine density. EMBO Rep. 2024;25:2348–74.

    Article  PubMed  PubMed Central  Google Scholar 

  159. O’Keeffe M, Booker SA, Walsh D, Li M, Henley C, Simões de Oliveira L, et al. Typical development of synaptic and neuronal properties can proceed without microglia in the cortex and thalamus. Nat Neurosci. 2025;28:268–79.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Jbaily A, Zhou X, Liu J, Lee T-H, Kamareddine L, Verguet S, et al. Air pollution exposure disparities across US population and income groups. Nature. 2022;601:228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet OJ, et al. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environ Int. 2020;137:105496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16:469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Margolis AE, Cohen JW, Ramphal B, Thomas L, Rauh V, Herbstman J, et al. Prenatal Exposure to Air Pollution and Early-Life Stress Effects on Hippocampal Subregional Volumes and Associations With Visuospatial Reasoning. Biol Psychiatry Glob Open Sci. 2022;2:292–300.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Block CL, Eroglu O, Mague SD, Smith CJ, Ceasrine AM, Sriworarat C, et al. Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Rep. 2022;40:111161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Smith CJ, Rendina DN, Kingsbury MA, Malacon KE, Nguyen DM, Tran JJ, et al. Microbial modulation via cross-fostering prevents the effects of pervasive environmental stressors on microglia and social behavior, but not the dopamine system. Mol Psychiatry. 2023;28:2549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Greenwood PB, DeSerisy M, Koe E, Rodriguez E, Salas L, Perera FP, et al. Combined and sequential exposure to prenatal second hand smoke and postnatal maternal distress is associated with cingulo-opercular global efficiency and attention problems in school-age children. Neurotoxicol Teratol. 2024;102:107338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rousset CI, Kassem J, Olivier P, Chalon S, Gressens P, Saliba E. Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury. J Neuropathol Exp Neurol. 2008;67:994–1000.

    Article  PubMed  Google Scholar 

  168. Chen H-R, Chen C-W, Mandhani N, Short-Miller JC, Smucker MR, Sun Y-Y, et al. Monocytic infiltrates contribute to autistic-like behaviors in a two-hit model of neurodevelopmental defects. J Neurosci J Soc Neurosci. 2020;40:9386–400.

    Article  CAS  Google Scholar 

  169. Saavedra LM, Hernández-Velázquez MG, Madrigal S, Ochoa-Zarzosa A, Torner L. Long-term activation of hippocampal glial cells and altered emotional behavior in male and female adult rats after different neonatal stressors. Psychoneuroendocrinology. 2021;126:105164.

    Article  CAS  PubMed  Google Scholar 

  170. Cheng J, Yuan L, Yu S, Gu B, Luo Q, Wang X, et al. Programmed cell death factor 4-mediated hippocampal synaptic plasticity is involved in early life stress and susceptibility to depression. Behav Brain Res. 2024;468:115028.

    Article  CAS  PubMed  Google Scholar 

  171. Deng S, Xie R, Kong A, Luo Y, Li J, Chen M, et al. Early-life stress contributes to depression-like behaviors in a two-hit mouse model. Behav Brain Res. 2023;452:114563.

    Article  CAS  PubMed  Google Scholar 

  172. Schwarz JM, Hutchinson MR, Bilbo SD. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci. 2011;31:17835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schwabenland M, Mossad O, Sievert A, Peres AG, Ringel E, Baasch S, et al. Neonatal immune challenge poses a sex-specific risk for epigenetic microglial reprogramming and behavioral impairment. Nat Commun. 2023;14:2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sierra A, Gottfried‐Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia. Glia. 2008;56:659–74.

    Article  PubMed  Google Scholar 

  175. Huang M, Malovic E, Ealy A, Jin H, Anantharam V, Kanthasamy A, et al. Microglial immune regulation by epigenetic reprogramming through histone H3K27 acetylation in neuroinflammation. Front Immunol. 2023;14:1052925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ayata P, Badimon A, Strasburger HJ, Duff MK, Montgomery SE, Loh Y-HE, et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci. 2018;21:1049–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: a focus on extrinsic factors. Glia. 2020;68:1100–13.

    Article  PubMed  Google Scholar 

  178. Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors. Glia. 2020;68:1085–99.

    Article  PubMed  Google Scholar 

  179. Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: Insights from clinical and preclinical studies. Prog Neurobiol. 2019;176:86–102.

    Article  PubMed  Google Scholar 

  180. Salehi MA, Zafari R, Mohammadi S, Shahrabi Farahani M, Dolatshahi M, Harandi H, et al. Brain-based sex differences in schizophrenia: A systematic review of fMRI studies. Hum Brain Mapp. 2024;45:e26664.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Leow KQ, Tonta MA, Lu J, Coleman HA, Parkington HC. Towards understanding sex differences in autism spectrum disorders. Brain Res. 2024;1833:148877.

    Article  CAS  PubMed  Google Scholar 

  182. Ferrara M, Curtarello EMA, Gentili E, Domenicano I, Vecchioni L, Zese R, et al. Sex differences in schizophrenia-spectrum diagnoses: results from a 30-year health record registry. Arch Women’s Ment Health. 2024;27:11–20.

    Article  Google Scholar 

  183. Werling DM, Parikshak NN, Geschwind DH. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun. 2016;7:10717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, Bilbo SD. Generation of a microglial developmental index in mice and in humans reveals a sex difference in maturation and immune reactivity. Glia. 2017;65:1504–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIEHS R00ES033278 to CJS.

Author information

Authors and Affiliations

Authors

Contributions

RMR and CJS contributed equally to the conceptualization and writing of this manuscript.

Corresponding author

Correspondence to Caroline J. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, R.M., Smith, C.J. Microglia as critical mediators linking perinatal immune stress to mental health trajectories. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02162-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02162-8

Search

Quick links