Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effect of the “exposome” on developmental brain health and cognitive outcomes

Abstract

Each child’s unique environment and experiences play a crucial role in shaping neurodevelopment and cognitive outcomes. Though a long history of prior research has highlighted the importance of numerous aspects of early life environments, including physical/chemical, psychosocial, socioeconomic, and cultural factors, it remains challenging to fully capture an individual’s complete set of varied exposures, experiences, and external environments (“exposome”) in a single study. The growing field of “exposomics” aims to overcome these challenges by leveraging interdisciplinary ideas and diverse methodologies to assess the additive and interactive effects of multimodal environmental features in relation to health outcomes. Here, we expand upon prior theories to describe a conceptual framework for leveraging exposomics in studies of brain health and cognitive functioning, including the outsized role of environmental influences during sensitive windows of neurodevelopmental plasticity in childhood and adolescence. We also describe current methodologies for the measurement and analysis of the exposome and suggest new ways to apply these methods in future work. Efforts to quantify the exposome in large-scale samples of youth have already begun to yield important new insights regarding environmental impacts on cognitive neurodevelopment and hold great promise for future work aiming to support healthy development in youth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic depiction of an individual’s “exposome”.

Similar content being viewed by others

References

  1. Coscia JM, Ris MD, Succop PA, Dietrich KN. Cognitive development of lead exposed children from ages 6 to 15 years: an application of growth curve analysis. Child Neuropsychol J Norm Abnorm Dev Child Adolesc. 2003;9:10–21.

    Google Scholar 

  2. Wodtke GT, Ard K, Bullock C, White K, Priem B. Concentrated poverty, ambient air pollution, and child cognitive development. Sci Adv. 2022;8:eadd0285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohodes EM, Kitt ER, Baskin-Sommers A, Gee DG. Influences of early-life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Dev Psychobiol. 2021;63:153–72.

    Article  PubMed  Google Scholar 

  4. Thompson RC, Montena AL, Liu K, Watson J, Warren SL. Associations of family distress, family income, and acculturation on pediatric cognitive performance using the NIH toolbox: implications for clinical and research settings. Arch Clin Neuropsychol. 2022;37:798–813.

    Article  PubMed  Google Scholar 

  5. Gellci K, Marusak HA, Peters C, Elrahal F, Iadipaolo AS, Rabinak CA. Community and household-level socioeconomic disadvantage and functional organization of the salience and emotion network in children and adolescents. Neuroimage. 2019;184:729–40.

    Article  PubMed  Google Scholar 

  6. Meca A, Peraza JA, Riedel MC, Hale W, Pettit JW, Musser ED, et al. Acculturative orientations among Hispanic/Latinx caregivers in the ABCD study: associations with caregiver and youth mental health and youth brain function. Biol Psychiatry Glob Open Sci. 2023;3:785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50.

    Article  CAS  Google Scholar 

  8. Mirkatouli NB, Hirota S, Yoshinaga S. Thyroid cancer risk after radiation exposure in adults-systematic review and meta-analysis. J Radiat Res. 2023;64:893–903.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vineis P, Barouki R. The exposome as the science of social-to-biological transitions. Environ Int. 2022;165:107312.

    Article  CAS  PubMed  Google Scholar 

  10. Bronfenbrenner U Ecological systems theory. In: Six theories of child development: revised formulation and current issues. London, England: Jessica Kingsley Publishers; 1992. p. 187–249.

  11. Schulz A, Northridge ME. Social determinants of health: implications for environmental health promotion. Health Educ Behav. 2004;31:455–71.

    Article  PubMed  Google Scholar 

  12. Beech BM, Ford C, Thorpe RJ, Bruce MA, Norris KC. Poverty, racism, and the public health crisis in America. Front Public Health. 2021;9:699049.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berry OO, Londoño Tobón A, Njoroge WFM. Social determinants of health: the impact of racism on early childhood mental health. Curr Psychiatry Rep. 2021;23:23.

    Article  PubMed  Google Scholar 

  14. Braveman P, Gottlieb L. The social determinants of health: it’s time to consider the causes of the causes. Public Health Rep. 2014;129:19–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cotton NK, Shim RS. Social determinants of health, structural racism, and the impact on child and adolescent mental health. J Am Acad Child Adolesc Psychiatry. 2022;61:1385–9.

    Article  PubMed  Google Scholar 

  16. Yearby R, Lewis C, Gibson C. Incorporating structural racism, employment discrimination, and economic inequities in the social determinants of health framework to understand agricultural worker health inequities. Am J Public Health. 2023;113:S65–S71.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xiao Y, Mann JJ, Chow JC-C, Brown TT, Snowden LR, Yip PS-F, et al. Patterns of social determinants of health and child mental health, cognition, and physical health. JAMA Pediatr. 2023;177:1294–305.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bevel MS, Tsai M-H, Parham A, Andrzejak SE, Jones S, Moore JX. Association of food deserts and food swamps with obesity-related cancer mortality in the US. JAMA Oncol. 2023;9:909–16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shim RS. Dismantling structural racism in psychiatry: a path to mental health equity. Am J Psychiatry. 2021;178:592–8.

    Article  PubMed  Google Scholar 

  20. Pratap P, Dickson A, Love M, Zanoni J, Donato C, Flynn MA, et al. Public health impacts of underemployment and unemployment in the United States: exploring perceptions, gaps and opportunities. Int J Environ Res Public Health. 2021;18:10021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bose S, Madrigano J, Hansel NN. When health disparities hit home: redlining practices, air pollution, and asthma. Am J Respir Crit Care Med. 2022;206:803–4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 2011;21:5–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gatzke-Kopp LM, Willoughby M, Kress AM, McArthur K, Wychgram C, Folch DC, et al. Airborne lead exposure and childhood cognition: the Environmental influences on Child Health Outcomes (ECHO) cohort (2003-22). Am J Public Health. 2024;114:309–18.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marshall AT, McConnell R, Lanphear BP, Thompson WK, Herting MM, Sowell ER. Risk of lead exposure, subcortical brain structure, and cognition in a large cohort of 9- to 10-year-old children. PLoS ONE. 2021;16:e0258469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim S-Y, Bechle M, Hankey S, Sheppard L, Szpiro AA, Marshall JD. Concentrations of criteria pollutants in the contiguous U.S., 1979 – 2015: role of prediction model parsimony in integrated empirical geographic regression. PLoS ONE. 2020;15:e0228535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaplin TM, Mauro KL, Niehaus CE. Effects of parenting environment on child and adolescent social-emotional brain function. Curr Top Behav Neurosci. 2022;54:341–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farooq B, Russell AE, Howe LD, Herbert A, Smith ADAC, Fisher HL, et al. The relationship between type, timing and duration of exposure to adverse childhood experiences and adolescent self-harm and depression: findings from three UK prospective population-based cohorts. J Child Psychol Psychiatry. 2024;65:1369–87.

    Article  PubMed  PubMed Central  Google Scholar 

  28. McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev. 2014;47:578–91.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cohodes EM, McCauley S, Pierre JC, Hodges HR, Haberman JT, Santiuste I, et al. Development and validation of the Dimensional Inventory of Stress and Trauma Across the Lifespan (DISTAL): a novel assessment tool to facilitate the dimensional study of psychobiological sequelae of exposure to adversity. Dev Psychobiol. 2023;65:e22372.

    Article  PubMed  Google Scholar 

  30. Cardenas-Iniguez C, Schachner JN, Ip KI, Schertz KE, Gonzalez MR, Abad S, et al. Building towards an adolescent neural urbanome: expanding environmental measures using linked external data (LED) in the ABCD study. Dev Cogn Neurosci. 2024;65:101338.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kind AJH, Buckingham WR. Making neighborhood-disadvantage metrics accessible — the neighborhood atlas. N Eng J Med. 2018;378:2456–8.

    Article  Google Scholar 

  32. Noelke C, McArdle N, DeVoe B, Leonardos M, Lu Y, Ressler RW, et al. Child Opportunity Index 3.0 Technical Documentation. diversitydatakids.org, Brandeis University. Retrieved from diversitydatakids.org/research-library/coi-30-technical-documentation. 2024.

  33. Nilsen FM, Ruiz JDC, Tulve NS. A meta-analysis of stressors from the total environment associated with children’s general cognitive ability. Int J Environ Res Public Health. 2020;17:5451.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bhaktaram A, Kress AM, Li Z, Knapp EA. Unpacking neighborhood socioeconomic status in children’s health research from an environmental justice perspective: a scoping review. Curr Environ Health Rep. 2024;11:288–99.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Merrick MT, Ford DC, Ports KA, Guinn AS. Prevalence of adverse childhood experiences from the 2011-2014 behavioral risk factor surveillance system in 23 states. JAMA Pediatr. 2018;172:1038–44.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wickramaratne PJ, Yangchen T, Lepow L, Patra BG, Glicksburg B, Talati A, et al. Social connectedness as a determinant of mental health: a scoping review. PLoS ONE. 2022;17:e0275004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cogn Neurosci. 2018;32:4–7.

    Article  PubMed  Google Scholar 

  38. Moore TM, Visoki E, Argabright ST, Didomenico GE, Sotelo I, Wortzel JD, et al. Modeling environment through a general exposome factor in two independent adolescent cohorts. Exposome. 2022;2:osac010.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maitre L, de Bont J, Casas M, Robinson O, Aasvang GM, Agier L, et al. Human Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open. 2018;8:e021311.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, et al. Cohort profile: the INMA–INfancia y Medio Ambiente–(Environment and Childhood) Project. Int J Epidemiol. 2012;41:930–40.

    Article  PubMed  Google Scholar 

  42. Cioffredi L-A, Yerby LG, Burris HH, Cole KM, Engel SM, Murray TM, et al. Assessing prenatal and early childhood social and environmental determinants of health in the HEALthy Brain and Child Development Study (HBCD). Dev Cogn Neurosci. 2024;69:101429.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morales E, Julvez J, Torrent M, de Cid R, Guxens M, Bustamante M, et al. Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers. Am J Epidemiol. 2009;169:1327–36.

    Article  PubMed  Google Scholar 

  44. Robinson O, Basagaña X, Agier L, De Castro M, Hernandez-Ferrer C, Gonzalez JR, et al. The pregnancy exposome: multiple environmental exposures in the INMA-Sabadell birth cohort. Environ Sci Technol. 2015;49:10632–41.

    Article  CAS  PubMed  Google Scholar 

  45. Ibrahim FA, Mehta UM, Thekkumkara SN, Rakesh K, Swetha G, Kumar CN, et al. Multivariate associations between cognition and neighborhood geospatial characteristics in schizophrenia. Asian J Psychiatry. 2023;84:103593.

    Article  Google Scholar 

  46. Simpson-Kent IL, Gataviņš MM, Tooley UA, Boroshok AL, McDermott CL, Park AT, et al. Multilayer network associations between the exposome and childhood brain development. bioRxiv. 2023.

  47. Brieant A, Vannucci A, Nakua H, Harris J, Lovell J, Brundavanam D, et al. Characterizing the dimensional structure of early-life adversity in the Adolescent Brain Cognitive Development (ABCD) Study. Dev Cogn Neurosci. 2023;61:101256.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Keller AS, Moore TM, Luo A, Visoki E, Gataviņš MM, Shetty A, et al. A general exposome factor explains individual differences in functional brain network topography and cognition in youth. Dev Cogn Neurosci. 2024;66:101370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore TM, Di Sandro A, Hillman N, Ruparel K, Barzilay R, Gur RE, et al. Development and public release of five continuous summary metrics for all census block-groups in the United States. PsyArXiv. 2025.

  50. Rakesh D, McLaughlin KA, Sheridan M, Humphreys KL, Rosen ML. Environmental contributions to cognitive development: the role of cognitive stimulation. Dev Rev. 2024;73:101135.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tooley UA, Bassett DS, Mackey AP. Environmental influences on the pace of brain development. Nat Rev Neurosci. 2021;22:372–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bradley RH, Corwyn RF. Socioeconomic status and child development. Annu Rev Psychol. 2002;53:371–99.

    Article  PubMed  Google Scholar 

  53. Manalew WS, Tennekoon VS, Lee J, O’Connell B, Quinn M. Adversity in infancy and childhood cognitive development: evidence from four developing countries. Int J Public Health. 2022;67:1604503.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, et al. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience. 2023;45:3381–408.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Luby JL, Tillman R, Barch DM. Association of timing of adverse childhood experiences and caregiver support with regionally specific brain development in adolescents. JAMA Netw Open. 2019;2:e1911426.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yuan A, Halabicky O, Rao H, Liu J. Lifetime air pollution exposure, cognitive deficits, and brain imaging outcomes: a systematic review. Neurotoxicology. 2023;96:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dobbins DL, Chen H, Cepeda MJ, Berenson L, Talton JW, Anderson KA, et al. Comparing impact of pesticide exposure on cognitive abilities of Latinx children from rural farmworker and urban non-farmworker families in North Carolina. Neurotoxicol Teratol. 2022;92:107106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lubczyńska MJ, Muetzel RL, El Marroun H, Hoek G, Kooter IM, Thomson EM, et al. Air pollution exposure during pregnancy and childhood and brain morphology in preadolescents. Environ Res. 2021;198:110446.

    Article  PubMed  Google Scholar 

  59. Papanikolaou M, Skenteris N, Piperakis SM. Effect of external classroom noise on schoolchildren’s reading and mathematics performance: correlation of noise levels and gender. Int J Adolesc Med Health. 2015;27:25–29.

    Article  CAS  PubMed  Google Scholar 

  60. Julvez J, López-Vicente M, Warembourg C, Maitre L, Philippat C, Gützkow KB, et al. Early life multiple exposures and child cognitive function: a multi-centric birth cohort study in six European countries. Environmental pollution (Barking, Essex : 1987). 2021;284:117404.

    Article  CAS  PubMed  Google Scholar 

  61. Nwobi NL, Adedapo SK, Olukolade O, Oyinlade OA, Lagunju IA, Atulomah NO, et al. Positive and inverse correlation of blood lead level with erythrocyte acetylcholinesterase and intelligence quotient in children: implications for neurotoxicity. Interdiscip Toxicol. 2019;12:136–42.

    Article  CAS  PubMed  Google Scholar 

  62. Bellinger D, Leviton A, Waternaux C, Needleman H, Rabinowitz M. Low-level lead exposure, social class, and infant development. I. Neurotoxicol Teratol. 1988;10:497–503.

    Article  CAS  PubMed  Google Scholar 

  63. Heidari S, Mostafaei S, Razazian N, Rajati M, Saeedi A, Rajati F. Correlation between lead exposure and cognitive function in 12-year-old children: a systematic review and meta-analysis. Environ Sci Pollut Res. 2021;28:43064–73.

    Article  CAS  Google Scholar 

  64. Parithathvi A, Choudhari N, Dsouza HS. Prenatal and early life lead exposure induced neurotoxicity. Hum Exp Toxicol. 2024;43:09603271241285523.

    Article  CAS  Google Scholar 

  65. Grippo A, Zhu K, Yeung EH, Bell EM, Bonner MR, Tian L, et al. Indoor air pollution exposure and early childhood development in the Upstate KIDS Study. Environ Res. 2023;234:116528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thompson R, Stewart G, Vu T, Jephcote C, Lim S, Barratt B, et al. Air pollution, traffic noise, mental health, and cognitive development: a multi-exposure longitudinal study of London adolescents in the SCAMP cohort. Environ Int. 2024;191:108963.

    Article  CAS  PubMed  Google Scholar 

  67. Beckwith T, Cecil K, Altaye M, Severs R, Wolfe C, Percy Z, et al. Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS ONE. 2020;15:e0228092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Binter A-C, Bernard JY, Mon-Williams M, Andiarena A, González-Safont L, Vafeiadi M, et al. Urban environment and cognitive and motor function in children from four European birth cohorts. Environ Int. 2022;158:106933.

    Article  PubMed  Google Scholar 

  69. Pérez-Crespo L, Kusters MSW, López-Vicente M, Lubczyńska MJ, Foraster M, White T, et al. Exposure to traffic-related air pollution and noise during pregnancy and childhood, and functional brain connectivity in preadolescents. Environ Int. 2022;164:107275.

    Article  PubMed  Google Scholar 

  70. Miller JG, Dennis EL, Heft-Neal S, Jo B, Gotlib IH. Fine particulate air pollution, early life stress, and their interactive effects on adolescent structural brain development: a longitudinal tensor-based morphometry study. Cereb Cortex. 2022;32:2156–69.

    Article  PubMed  Google Scholar 

  71. Cserbik D, Chen J-C, McConnell R, Berhane K, Sowell ER, Schwartz J, et al. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. Environ Int. 2020;143:105933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramírez Benítez Y, Díaz Bringas M, Jiménez-Morales RM, Ngyah-Etchutambe IB, Pagani LS. Secondhand smoke exposure and brain health indicators in cuban preschoolers. Toxics. 2025;13:62.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Klatte M, Spilski J, Mayerl J, Möhler U, Lachmann T, Bergström K. Effects of aircraft noise on reading and quality of life in primary school children in Germany: results from the NORAH study. Environ Behav. 2017;49:390–424.

    Article  Google Scholar 

  74. Sánchez Lizardi P, O’Rourke MK, Morris RJ. The effects of organophosphate pesticide exposure on Hispanic children’s cognitive and behavioral functioning. J Pediatr Psychol. 2008;33:91–101.

    Article  Google Scholar 

  75. van Wendel de Joode B, Mora AM, Lindh CH, Hernández-Bonilla D, Córdoba L, Wesseling C, et al. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex. 2016;85:137–50.

    Article  PubMed  Google Scholar 

  76. Wade NE, McCabe CJ, Wallace AL, Gonzalez MR, Hoh E, Infante MA, et al. Clouding up cognition? Secondhand cannabis and tobacco exposure related to cognitive functioning in youth. Biol Psychiatry Glob Open Sci. 2023;3:233–42.

    Article  PubMed  Google Scholar 

  77. Fuemmeler BF, Glasgow TE, Schechter JC, Maguire R, Sheng Y, Bidopia T, et al. Prenatal and childhood smoke exposure associations with cognition, language, and attention-deficit/hyperactivity disorder. J Pediatr. 2023;256:77–84.e1.

    Article  PubMed  Google Scholar 

  78. Stansfeld S, Hygge S, Clark C, Alfred T. Night time aircraft noise exposure and children’s cognitive performance. Noise Health. 2010;12:255–62.

    Article  PubMed  Google Scholar 

  79. van Kempen E, van Kamp I, Lebret E, Lammers J, Emmen H, Stansfeld S. Neurobehavioral effects of transportation noise in primary schoolchildren: a cross-sectional study. Environ Health. 2010;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Davis EP, Korja R, Karlsson L, Glynn LM, Sandman CA, Vegetabile B, et al. Across continents and demographics, unpredictable maternal signals are associated with children’s cognitive function. EBioMedicine. 2019;46:256–63.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cabrera NJ, Fagan J, Wight V, Schadler C. The influence of mother, father, and child risk on parenting and children’s cognitive and social behaviors. Child Dev. 2011;82:1985–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Raikes H, Alexander Pan B, Luze G, Tamis-LeMonda CS, Brooks-Gunn J, Constantine J, et al. Mother–child bookreading in low-income families: correlates and outcomes during the first three years of life. Child Dev. 2006;77:924–53.

    Article  PubMed  Google Scholar 

  83. Slykerman RF, Thompson JMD, Pryor JE, Becroft DMO, Robinson E, Clark PM, et al. Maternal stress, social support and preschool children’s intelligence. Early Hum Dev. 2005;81:815–21.

    Article  CAS  PubMed  Google Scholar 

  84. Oh DL, Jerman P, Silvério Marques S, Koita K, Purewal Boparai SK, Burke Harris N, et al. Systematic review of pediatric health outcomes associated with childhood adversity. BMC Pediatr. 2018;18:83.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14:245–58.

    Article  CAS  PubMed  Google Scholar 

  86. Richards M, Wadsworth M. Long term effects of early adversity on cognitive function. Arch Dis Child. 2004;89:922–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kalia V, Knauft K, Hayatbini N. Adverse childhood experiences (ACEs) associated with reduced cognitive flexibility in both college and community samples. PLoS ONE. 2021;16:e0260822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Buimer EEL, Brouwer RM, Mandl RCW, Pas P, Schnack HG, Hulshoff Pol HE Adverse childhood experiences and fronto-subcortical structures in the developing brain. Front Psychiatry. 2022;13.

  89. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.

    Article  PubMed  Google Scholar 

  90. Nweze T, Ezenwa M, Ajaelu C, Hanson JL, Okoye C. Cognitive variations following exposure to childhood adversity: evidence from a pre-registered, longitudinal study. eClinicalMedicine. 2023;56:101784.

    Article  PubMed  Google Scholar 

  91. Sheridan MA, McLaughlin KA. Dimensions of early experience and neural development: deprivation and threat. Trends Cogn Sci. 2014;18:580–5.

    Article  PubMed  PubMed Central  Google Scholar 

  92. McLaughlin KA, Sheridan MA. Beyond cumulative risk: a dimensional approach to childhood adversity. Curr Dir Psychol Sci. 2016;25:239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tibu F, Sheridan MA, McLaughlin KA, Nelson CA, Fox NA, Zeanah CH. Disruptions of working memory and inhibition mediate the association between exposure to institutionalization and symptoms of attention deficit hyperactivity disorder. Psychol Med. 2016;46:529–41.

    Article  CAS  PubMed  Google Scholar 

  94. Noble KG, McCandliss BD, Farah MJ. Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev Sci. 2007;10:464–80.

    Article  PubMed  Google Scholar 

  95. McLaughlin KA, Sheridan MA, Gold AL, Duys A, Lambert HK, Peverill M, et al. Maltreatment exposure, brain structure, and fear conditioning in children and adolescents. Neuropsychopharmacology. 2016;41:1956–64.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Machlin L, Miller AB, Snyder J, McLaughlin KA, Sheridan MA. Differential associations of deprivation and threat With cognitive control and fear conditioning in early childhood. Front Behav Neurosci. 2019;13:80.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Carozza S, Holmes J, Astle DE. Testing deprivation and threat: a preregistered network analysis of the dimensions of early adversity. Psychol Sci. 2022;33:1753–66.

    Article  PubMed  Google Scholar 

  98. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17:652–66.

    Article  CAS  PubMed  Google Scholar 

  99. Tottenham N. Human amygdala development in the absence of species-expected caregiving. Dev Psychobiol. 2012;54:598–611.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Weiss NH, Goncharenko S, Forkus SR, Ferguson JJ, Yang M. Longitudinal investigation of bidirectional relations between childhood trauma and emotion-driven impulsivity in the Adolescent Brain Cognitive Development Study. J Adolesc Health Off Publ Soc Adolesc Med. 2023;73:731–8.

    Article  Google Scholar 

  101. Gur RE, Moore TM, Rosen AFG, Barzilay R, Roalf DR, Calkins ME, et al. Burden of environmental adversity associated with psychopathology, maturation, and brain behavior parameters in youths. JAMA Psychiatry. 2019;76:966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Guerra R, Rodrigues RB, Aguiar C, Carmona M, Alexandre J, Lopes RC. School achievement and well-being of immigrant children: the role of acculturation orientations and perceived discrimination. J Sch Psychol. 2019;75:104–18.

    Article  PubMed  Google Scholar 

  103. Kiang L, Witkow MR, Thompson TL. Model minority stereotyping, perceived discrimination, and adjustment among adolescents from Asian American backgrounds. J Youth Adolesc. 2016;45:1366–79.

    Article  PubMed  Google Scholar 

  104. Chen S, Lopez-Quintero C, Elton A. Perceived racism, brain development, and internalizing and externalizing symptoms: findings from the ABCD study. J Am Acad Child Adolesc Psychiatry 2025. In Press.

  105. Obenauf C, Ravi K, Kamper J Executive functioning task performance as predicted by linguistic and cultural factors among Latin American youth living in the USA. Arch Clin Neuropsychol Off J Natl Acad Neuropsychol 2025. In Press.

  106. Schneider JM, Kim J, Poudel S, Lee YS, Maguire MJ. Socioeconomic status (SES) and cognitive outcomes are predicted by resting-state EEG in school-aged children. Dev Cogn Neurosci. 2024;70:101468.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Meyer OL, Harrati A, Gavett BE, Farias ST, Whitmer RA, Widaman K, et al. Effects of early life environment and adulthood SES on cognitive change in a multiethnic cohort. J Int Neuropsychol Soc JINS. 2023;29:742–50.

    Article  PubMed  Google Scholar 

  108. Petrill SA, Deater‐Deckard K. Task orientation, parental warmth and SES account for a significant proportion of the shared environmental variance in general cognitive ability in early childhood: evidence from a twin study. Dev Sci. 2004;7:25–32.

    Article  PubMed  Google Scholar 

  109. Taylor RL, Cooper SR, Jackson JJ, Barch DM. Assessment of neighborhood poverty, cognitive function, and prefrontal and hippocampal volumes in children. JAMA Netw Open. 2020;3:e2023774.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ruiz JDC, Quackenboss JJ, Tulve NS. Contributions of a child’s built, natural, and social environments to their general cognitive ability: a systematic scoping review. PLoS ONE. 2016;11:e0147741.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Meredith WJ, Cardenas-Iniguez C, Berman MG, Rosenberg MD. Effects of the physical and social environment on youth cognitive performance. Dev Psychobiol. 2022;64:e22258.

    Article  PubMed  Google Scholar 

  112. Juvrud J, Haas SA, Lindskog M, Astor K, Namgyel SC, Wangmo T, et al. High quality social environment buffers infants’ cognitive development from poor maternal mental health: evidence from a study in Bhutan. Dev Sci. 2022;25:e13203.

    Article  PubMed  Google Scholar 

  113. Gartland D, Riggs E, Muyeen S, Giallo R, Afifi TO, MacMillan H, et al. What factors are associated with resilient outcomes in children exposed to social adversity? A systematic review. BMJ Open. 2019;9:e024870.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ku BS, Aberizk K, Feurer C, Yuan Q, Druss BG, Jeste DV, et al. Aspects of Area Deprivation Index in relation to hippocampal volume among children. JAMA Netw Open. 2024;7:e2416484.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rakesh D, Whittle S. Socioeconomic status and the developing brain – A systematic review of neuroimaging findings in youth. Neurosci Biobehav Rev. 2021;130:379–407.

    Article  PubMed  Google Scholar 

  116. Hackman DA, Farah MJ. Socioeconomic status and the developing brain. Trends Cogn Sci. 2009;13:65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Weissman DG, Hatzenbuehler ML, Cikara M, Barch DM, McLaughlin KA. State-level macro-economic factors moderate the association of low income with brain structure and mental health in U.S. children. Nat Commun. 2023;14:2085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci. 2015;18:773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao S, Su H, Cong J, Wen X, Yang H, Chen P, et al. Hierarchical individual variation and socioeconomic impact on personalized functional network topography in children. BMC Med. 2024;22:556.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gornik AE, Jacobson LA, Kalb LG, Pritchard AE. If opportunity knocks: understanding contextual factors’ influence on cognitive systems. Res Child Adolesc Psychopathol. 2024;52:521–33.

    Article  CAS  PubMed  Google Scholar 

  121. Cui Z, Li H, Xia CH, Larsen B, Adebimpe A, Baum GL, et al. Individual variation in functional topography of association networks in youth. Neuron. 2020;106:340–353.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tao C, Li Z, Fan Y, Huang Y, Wan T, Shu M, et al. Estimating lead-attributable mortality burden by socioeconomic status in the USA. Int J Epidemiol. 2024;53:dyae089.

    Article  PubMed  Google Scholar 

  123. Rakesh D, Zalesky A, Whittle S. Assessment of parent income and education, neighborhood disadvantage, and child brain structure. JAMA Netw Open. 2022;5:e2226208.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Larsen B, Sydnor VJ, Keller AS, Yeo BTT, Satterthwaite TD. A critical period plasticity framework for the sensorimotor–association axis of cortical neurodevelopment. Trends Neurosci. 2023;46:847–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron. 2021;109:2820–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sisk LM, Gee DG. Stress and adolescence: vulnerability and opportunity during a sensitive window of development. Curr Opin Psychol. 2022;44:286–92.

    Article  PubMed  Google Scholar 

  127. Keller AS, Pines AR, Shanmugan S, Sydnor VJ, Cui Z, Bertolero MA, et al. Personalized functional brain network topography is associated with individual differences in youth cognition. Nat Commun. 2023;14:8411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shanmugan S, Seidlitz J, Cui Z, Adebimpe A, Bassett DS, Bertolero MA, et al. Sex differences in the functional topography of association networks in youth. Proc Natl Acad Sci. 2022;119:e2110416119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev. 2018;94:179–95.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Somerville LH, Jones RM, Ruberry EJ, Dyke JP, Glover G, Casey B. Medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychol Sci. 2013;24:1554–62.

    Article  PubMed  Google Scholar 

  131. Rakesh D, Whittle S, Sheridan MA, McLaughlin KA. Childhood socioeconomic status and the pace of structural neurodevelopment: accelerated, delayed, or simply different? Trends Cogn Sci. 2023;27:833–51.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jenkins LM, Chiang JJ, Vause K, Hoffer L, Alpert K, Parrish TB, et al. Subcortical structural variations associated with low socioeconomic status in adolescents. Hum Brain Mapp. 2020;41:162–71.

    Article  PubMed  Google Scholar 

  133. Callaghan BL, Tottenham N. The Stress Acceleration Hypothesis: effects of early-life adversity on emotion circuits and behavior. Curr Opin Behav Sci. 2016;7:76–81.

    Article  PubMed  Google Scholar 

  134. Herzberg MP, McKenzie KJ, Hodel AS, Hunt RH, Mueller BA, Gunnar MR, et al. Accelerated maturation in functional connectivity following early life stress: circuit specific or broadly distributed? Dev Cogn Neurosci. 2021;48:100922.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Colich NL, Rosen ML, Williams ES, McLaughlin KA. Biological aging in childhood and adolescence following experiences of threat and deprivation: a systematic review and meta-analysis. Psychol Bull. 2020;146:721–64.

    Article  PubMed  PubMed Central  Google Scholar 

  136. McLaughlin KA, Sheridan MA, Humphreys KL, Belsky J, Ellis BJ. The value of dimensional models of early experience: thinking clearly about concepts and categories. Perspect Psychol Sci. 2021;16:1463–72.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Roubinov D, Meaney MJ, Boyce WT. Change of pace: how developmental tempo varies to accommodate failed provision of early needs. Neurosci Biobehav Rev. 2021;131:120–34.

    Article  PubMed  PubMed Central  Google Scholar 

  138. McLaughlin KA, Sheridan MA, Nelson CA. Neglect as a violation of species-expectant experience: neurodevelopmental consequences. Biol Psychiatry. 2017;82:462–71.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ellis BJ, Sheridan MA, Belsky J, McLaughlin KA. Why and how does early adversity influence development? Toward an integrated model of dimensions of environmental experience. Dev Psychopathol. 2022;34:447–71.

    Article  PubMed  Google Scholar 

  140. Firestone M, Moya J, Cohen‐Hubal E, Zartarian V, Xue J. Identifying childhood age groups for exposure assessments and monitoring. Risk Anal. 2007;27:701–14.

    Article  PubMed  Google Scholar 

  141. Persson Waye K, Löve J, Lercher P, Dzhambov AM, Klatte M, Schreckenberg D, et al. Adopting a child perspective for exposome research on mental health and cognitive development - Conceptualisation and opportunities. Environ Res. 2023;239:117279.

    Article  CAS  PubMed  Google Scholar 

  142. Rudolph KD, Skymba HV, Modi HH, Davis MM, Sze WY, Rosswurm CP, et al. How does peer adversity “get inside the brain?” adolescent girls’ differential susceptibility to neural dysregulation of emotion following victimization. Dev Psychobiol. 2021;63:481–95.

    Article  PubMed  Google Scholar 

  143. Harkness KL, Bruce AE, Lumley MN. The role of childhood abuse and neglect in the sensitization to stressful life events in adolescent depression. J Abnorm Psychol. 2006;115:730–41.

    Article  PubMed  Google Scholar 

  144. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tervo-Clemmens B, Marek S, Barch DM. Tailoring psychiatric neuroimaging to translational goals. JAMA Psychiatry. 2023;80:765–6.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kalisch R, Cramer AOJ, Binder H, Fritz J, Leertouwer I, Lunansky G, et al. Deconstructing and reconstructing resilience: a dynamic network approach. Perspectives on psychological science : a journal of the Association for Psychological Science. 2019;14:765–77.

    Article  PubMed  Google Scholar 

  147. Shaw R, Pengelly C, Crinnin C, Amina E, Wutz AV, King PR. Scoping review of the role of social support in women Veterans’ psychosocial and health outcomes. J Women Aging. 2024;36:450–74.

    Article  PubMed  Google Scholar 

  148. Höltge J, Theron L, van Rensburg A, Cowden RG, Govender K, Ungar M. Investigating the interrelations between systems of support in 13- to 18-year-old adolescents: a network analysis of resilience promoting systems in a high and middle-income country. Child Dev. 2021;92:586–99.

    Article  PubMed  Google Scholar 

  149. Ellis BJ, Abrams LS, Masten AS, Sternberg RJ, Tottenham N, Frankenhuis WE. Hidden talents in harsh environments. Dev Psychopathol. 2022;34:95–113.

    Article  PubMed  Google Scholar 

  150. Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, et al. Air pollution, depressive and anxiety disorders, and brain effects: a systematic review. Neurotoxicology. 2022;93:272–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Evans GW. The built environment and mental health. J Urban Health Bull N Y Acad Med. 2003;80:536–55.

    Google Scholar 

  152. Chou T, Asnaani A, Hofmann SG. Perception of racial discrimination and psychopathology across three U.S. ethnic minority groups. Cult Divers Ethn Minor Psychol. 2012;18:74–81.

    Article  Google Scholar 

  153. Hahad O, Al-Kindi S, Lelieveld J, Münzel T, Daiber A. Supporting and implementing the beneficial parts of the exposome: the environment can be the problem, but it can also be the solution. Int J Hyg Environ Health. 2024;255:114290.

    Article  CAS  PubMed  Google Scholar 

  154. Troller-Renfree SV, Costanzo MA, Duncan GJ, Magnuson K, Gennetian LA, Yoshikawa H, et al. The impact of a poverty reduction intervention on infant brain activity. Proc Natl Acad Sci. 2022;119:e2115649119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Upadhyay RP, Taneja S, Chowdhury R, Dhabhai N, Sapra S, Mazumder S, et al. Child neurodevelopment after multidomain interventions from preconception through early childhood: the WINGS randomized clinical trial. JAMA. 2024;331:28.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Collins-Anderson A, Vahedi L, Hutson W, Hudson D. Intersectionality and mental health among emerging adult Black American men: a scoping review. Curr Psychiatry Rep. 2022;24:819–30.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, et al. Decreased brain volume in adults with childhood lead exposure. PLoS Med. 2008;5:e112.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mohamed NN, Loy SL, Lim PY, Al Mamun A, Jan Mohamed HJ. Early life secondhand smoke exposure assessed by hair nicotine biomarker may reduce children’s neurodevelopment at 2 years of age. Sci Total Environ. 2018;610-1:147–53.

    Article  Google Scholar 

  159. El Marroun H, Schmidt MN, Franken IHA, Jaddoe VWV, Hofman A, van der Lugt A, et al. Prenatal tobacco exposure and brain morphology: a prospective study in young children. Neuropsychopharmacol Publ Am Coll Neuropsychopharmacol. 2014;39:792–800.

    Article  Google Scholar 

  160. Gong W, Rolls ET, Du J, Feng J, Cheng W. Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study. Nat Commun. 2021;12:3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hong S-J, Sisk LM, Caballero C, Mekhanik A, Roy AK, Milham MP, et al. Decomposing complex links between the childhood environment and brain structure in school-aged youth. Dev Cogn Neurosci. 2021;48:100919.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT. Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci. 2009;21:1106–15.

    Article  PubMed  Google Scholar 

  163. Ramphal B, Whalen DJ, Kenley JK, Yu Q, Smyser CD, Rogers CE, et al. Brain connectivity and socioeconomic status at birth and externalizing symptoms at age 2 years. Dev Cogn Neurosci. 2020;45:100811.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Elansary M, Wei WS, Pierce LJ, McCoy DC, Nelson CA. Association of neighborhood opportunity with infant brain activity and cognitive development. J Dev Behav Pediatr. 2024;45:e217–e224.

    Article  PubMed  Google Scholar 

  165. Zhi D, Jiang R, Pearlson G, Fu Z, Qi S, Yan W, et al. Triple interactions between the environment, brain, and behavior in children: an ABCD study. Biol Psychiatry. 2024;95:828–38.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation (ASK) and the National Institute of Mental Health (1L30MH131061-01; ASK).

Author information

Authors and Affiliations

Authors

Contributions

HR and ASK formulated the topic and the main idea. HR, ND and NK conducted the review of literature material. HR wrote the initial draft. AW designed all schematics. HR, ND, RB, AW, NK and ASK revised the manuscript. All authors contributed to the final draft.

Corresponding author

Correspondence to Arielle S. Keller.

Ethics declarations

Competing interests

RB reports owning stock in Taliaz Health and serving on the scientific boards of Taliaz Health outside the submitted work. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, H., Dave, N., Barzilay, R. et al. The effect of the “exposome” on developmental brain health and cognitive outcomes. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02180-6

Search

Quick links