Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ro 64-6198, a selective NOP receptor agonist attenuates social impairments associated with NTG-induced migraine pain

Abstract

Migraine is a debilitating neurological disorder with significant impact on quality of life, including social functioning. This study investigated the effects of nitroglycerin (NTG)-induced migraine in male and female mice on social behavior and neuronal activation and explored the therapeutic potential of nociceptin opioid peptide (NOP) receptor agonism. We found that acute NTG administration induced mechanical allodynia in periorbital region and paw as well as impaired social behavior in both sexes, albeit with sex-specific patterns. The NOP receptor agonist, Ro 64-6198, reversed both the allodynia and social deficits induced by NTG. The reversal of social impairment elicited by Ro 64-6198 was partially blocked by the NOP receptor antagonist, SB-612111, confirming NOP receptor-mediated action. Using TRAP2/Ai9 transgenic mice, we demonstrated that NTG induced significant neuronal activation in brain regions associated with pain and social behavior, including the anterior cingulate cortex, amygdala, hippocampus, hypothalamus, and periaqueductal gray (in female mice) as well as trigeminal nucleus caudalis (TNC) in male and female mice. Consistent with the behavioral results, NTG-induced neuronal activation in these brain regions was significantly reduced in the presence of Ro 64-6198. Our findings provide further evidence for the involvement of the NOP system in migraine pathophysiology, particularly social aspects that are indirectly pain-related symptoms, and provide a direct correlation with neuronal activation in several brain regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The NOP receptor agonist Ro 64-6198 (0.6 mg/kg, i.p.) blocked mechanical allodynia without affecting spontaneous locomotor activity in male mice, but not in female mice.
Fig. 2: NTG (10 mg/kg, i.p) treatment induced social impairments in male and female mice by performing three-chamber social test.
Fig. 3: The NOP receptor agonist Ro 64-6198 attenuates NTG-induced (10 mg/kg, i.p) social impairments that is partially blocked by the NOP antagonist SB-612111 using three-chamber social novelty test in male and female mice.
Fig. 4: Expression of tdTomato signal in brain regions of male and female TRAP2/Ai9 mice under different treatment conditions.

Similar content being viewed by others

Data availability

Data are available via Repository for Open Data “RepOD” (https://doi.org/10.18150/JCTHAV) at the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

References

  1. Stovner LJ, Hagen K, Linde M, Steiner TJ. The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain. 2022;23:34.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Storer RJ, Akerman S, Goadsby PJ. Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol. 2003;138:317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tepper SJ. Opioids should not be used in migraine. Headache. 2012;52:30–34.

    Article  PubMed  Google Scholar 

  4. Pradhan AA, Smith ML, Zyuzin J, Charles A. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol. 2014;171:2375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abdallah K, Gendron L. The delta opioid receptor in pain control. Handb Exp Pharmacol. 2018;247:147–77.

  6. Burks K. Intravenous acetaminophen reduces opioid use for postoperative pain in obese patients undergoing laparoscopic cholecystectomy. Doctoral dissertation. University of Southern Mississippi; 2015.

  7. Parker KE, Sugiarto E, Taylor AMW, Pradhan AA, Al-Hasani R. Pain, motivation, migraine, and the microbiome: new frontiers for opioid systems and disease. Mol Pharmacol. 2020;98:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neal CR, Mansour A, Reinscheid R, Nothacker H-P, Civelli O, Akil H, et al. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with125I-[14Tyr]-orphanin FQ binding. J Comp Neurol. 1999;412:563–605.

    Article  CAS  PubMed  Google Scholar 

  9. Targowska-Duda KM, Ozawa A, Bertels Z, Cippitelli A, Marcus JL, Mielke-Maday HK, et al. NOP receptor agonist attenuates nitroglycerin-induced migraine-like symptoms in mice. Neuropharmacology. 2020;170:108029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. El Daibani A, Che T. Spotlight on nociceptin/orphanin FQ receptor in the treatment of pain. Molecules. 2022;27:595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lambert GA, Donaldson C, Boers PM, Zagami AS. Activation of trigeminovascular neurons by glyceryl trinitrate. Brain Res. 2000;887:203–10.

    Article  CAS  PubMed  Google Scholar 

  12. Borsook D, Maleki N, Burstein RM. Migraine. In: Zigmond MJ, Rowland LP, Coyle JT. Neurobiology of brain disorders. San Diego: Academic Press; 2015. p. 693–708.

  13. Pourrahimi AM, Abbasnejad M, Raoof M, Esmaeili-Mahani S, Kooshki R. The involvement of orexin 1 and cannabinoid 1 receptors within the ventrolateral periaqueductal gray matter in the modulation of migraine-induced anxiety and social behavior deficits of rats. Peptides. 2021;146:170651.

    Article  CAS  PubMed  Google Scholar 

  14. Snoer AH, Høst C, Dømgaard M, Hansen JM. Frequent or chronic migraine negatively impacts personal, social and professional life. Dan Med J. 2021, 68:A08200592.

  15. Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013;154:S44–S53.

    Article  CAS  PubMed  Google Scholar 

  16. Yücel Y. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–81.

    Article  PubMed  Google Scholar 

  17. Öhman A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology. 2005;30:953–8.

    Article  PubMed  Google Scholar 

  18. Christensen S, Petersen S, Sørensen DB, Olesen J, Jansen-Olesen I. Cilostazol induces C-fos expression in the trigeminal nucleus caudalis and behavioural changes suggestive of headache with the migraine-like feature photophobia in female rats. Cephalalgia. 2018;38:452–65.

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, Ren X, Zhu C, Wang W, Zhang K, Li Z, et al. A c-Fos activation map in nitroglycerin/levcromakalim-induced models of migraine. J Headache Pain. 2022;23:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Buzás P, Vécsei L. Depletion of calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat after electrical stimulation of the Gasserian ganglion. Exp Brain Res. 1998;118:111–4.

    Article  PubMed  Google Scholar 

  21. Harris JA, Hirokawa KE, Sorensen SA, Gu H, Mills M, Ng LL, et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front Neural Circuits. 2014;8:76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Targowska-Duda KM, Peters D, Marcus JL, Zribi G, Toll L, Ozawa A. Functional and anatomical analyses of active spinal circuits in a mouse model of chronic pain. Pain. 2024;165:685.

    Article  PubMed  Google Scholar 

  23. Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, et al. Thirst-associated preoptic neurons encode an aversive motivational drive. Science. 2017;357:1149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science. 2019;363:276–81.

    Article  CAS  PubMed  Google Scholar 

  25. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci. 2019;22:460–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinform. 2021;22:433.

    Article  Google Scholar 

  28. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  29. De Logu F, Landini L, Janal MN, Li Puma S, De Cesaris F, Geppetti P, et al. Migraine-provoking substances evoke periorbital allodynia in mice. J Headache Pain. 2019;20:18.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63.

    Article  CAS  PubMed  Google Scholar 

  31. Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism. 2022;13:41.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bates E, Nikai T, Brennan K, Fu Y-H, Charles A, Basbaum A, et al. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. 2010;30:170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaufmann D, Brennan KC. The effects of chronic stress on migraine relevant phenotypes in male mice. Front Cell Neurosci. 2018;12:294.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ratcliffe GE, Enns MW, Jacobi F, Belik S-L, Sareen J. The relationship between migraine and mental disorders in a population-based sample. Gen Hosp Psychiatry. 2009;31:14–19.

    Article  PubMed  Google Scholar 

  35. Hoffmann J, Charles A. Glutamate and its receptors as therapeutic targets for migraine. Neurotherapeutics. 2018;15:361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stamford JA. Descending control of pain. Br J Anaesth. 1995;75:217–27.

    Article  CAS  PubMed  Google Scholar 

  37. Hughes EM, Calcagno P, Sanchez C, Smith K, Kelly JP, Finn DP, et al. Mu-opioid receptor agonism differentially alters social behaviour and immediate early gene expression in male adolescent rats prenatally exposed to valproic acid versus controls. Brain Res Bull. 2021;174:260–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ramachandran R, Bhatt DK, Ploug KB, Olesen J, Jansen-Olesen I, Hay-Schmidt A, et al. A naturalistic glyceryl trinitrate infusion migraine model in the rat. Cephalalgia. 2012;32:73–84.

    Article  PubMed  Google Scholar 

  39. Tassorelli C, Joseph SA. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682:167–81.

    Article  CAS  PubMed  Google Scholar 

  40. Kagan R, Kainz V, Burstein R, Noseda R. Hypothalamic and basal ganglia projections to the posterior thalamus: Possible role in modulation of migraine headache and photophobia. Neuroscience. 2013;248:359–68.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain. 2017;18:7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hadjikhani N, Ward N, Boshyan J, Napadow V, Maeda Y, Truini A, et al. The missing link: enhanced functional connectivity between amygdala and visceroceptive cortex in migraine. Cephalalgia. 2013;33:1264–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Nikon Center of Excellence at the Florida Atlantic University, Stiles-Nicholson Brain Institute for the use of the microscope. In addition, we want to thank all the husbandry and veterinary staff for the care of our animal subjects at the Medical University of Lublin (Experimental Medicine Center) and the Florida Atlantic University.

Funding

This work was supported by grant from the Polish National Science Center (SONATA BIS 11 funding 2021/42/E/NZ7/00191) to KMT-D; NIH grant (R34NS121875) to AO, and DoD grant (W81XWH2110410) to LT. AM.’s internship at Florida Atlantic University was funded by SONATA BIS 11.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors listed in this manuscript have read the final version of the manuscript. The contributions of each author are: KMT-D, AO, and LT designed the study; AM, OW-D, MM, DP, IS, D.P-M and KMT-D performed experiments; AM, KMT-D, OW-D, AO and M. Maj analyzed data. AM, KMT-D, AO and LT wrote the manuscript.

Corresponding authors

Correspondence to Akihiko Ozawa or Katarzyna M. Targowska-Duda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41386_2025_2187_MOESM1_ESM.docx

Table S1 Statistical analysis for all treatments with reference to total time spent in chamber with familiar and non-familiar mice, and after sumatriptan co-injection with NTG using social test

41386_2025_2187_MOESM2_ESM.docx

Table S2 Statistical values for neuronal activation with treatment in various brain regions in male and female TRAP2/Ai9 mice

Supplemental material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudgal, A., Wronikowska-Denysiuk, O., Martinez, M. et al. Ro 64-6198, a selective NOP receptor agonist attenuates social impairments associated with NTG-induced migraine pain. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02187-z

Search

Quick links