Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Blood and neuronal extracellular vesicle mitochondrial disruptions in schizophrenia

Abstract

The high energy demand of the human brain obligates robust mitochondrial energy metabolism, while mitochondrial dysfunctions have been linked to neuropsychiatric disorders, including schizophrenia spectrum disorders (SSD). However, in vivo assessments that can directly inform brain mitochondrial functioning and its etiopathophysiological path to SSD remain difficult to obtain. We hypothesized that system and brain mitochondrial dysfunctions in SSD may be indexed by elevated cell-free mitochondrial DNA (cf-mtDNA) levels in the blood and in neuronal extracellular vesicles (nEVs). We also explored if these mtDNA marker elevations were associated with brain metabolites as measured by magnetic resonance spectroscopy (MRS). We examined blood cf-mtDNA in 58 SSD patients and 33 healthy controls, followed by assessing nEV mtDNA and metabolite levels using MRS in a subgroup of patients and controls. We found that people with SSD had significantly elevated cf-mtDNA levels in both the blood (p = 0.0002) and neuronal EVs (p = 0.003) compared to controls. These mtDNA abnormalities can be linked back to brain lactate+ levels such that higher blood and nEV mtDNA levels were significantly associated with higher lactate+ levels measured at the anterior cingulate cortex (r = 0.53, 0.53; p = 0.008, 0.03, respectively) in SSD patients. Furthermore, higher developmental stress and trauma were significantly associated with higher cf-mtDNA levels in both the blood and neuronal EVs in SSD patients (r = 0.29, 0.49; p = 0.01, 0.03, respectively). In conclusion, if replicated and fully developed, blood and neuronal EV-based cell-free mtDNA may provide a clinically accessible biomarker to more directly evaluate the mitochondrial hypothesis and the abnormal bioenergetics pathways in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell free Blood mtDNA and neuronal EV characterization in SSD as compared to healthy controls.
Fig. 2: ACC Metabolite Alterations and Associations with Blood and EVs cf-mtDNA.
Fig. 3: Blood and Neuronal EV cf-mtDNA Correlate with ACC Lactate+ in SSD Patients and Healthy Controls.
Fig. 4: Childhood Stress Correlations with Blood and EV cf-mtDNA in SSD Patients and Healthy Controls.

Similar content being viewed by others

Data availability

The datasets generated and analyzed here are currently not publicly available, but we will strive to honor data request on case-by-case basis.

References

  1. Whatley SA, Curti D, Marchbanks RM. Mitochondrial involvement in schizophrenia and other functional psychoses. Neurochem Res. 1996;21:995–1004.

    Article  PubMed  Google Scholar 

  2. Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol Psychiatry. 2018;83:751–60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whitehurst T, Howes O. The role of mitochondria in the pathophysiology of schizophrenia: a critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev. 2022;132:449–64.

    Article  PubMed  Google Scholar 

  4. Chouinard V-A, Du F, Chen X, Tusuzian E, Ren B, Anderson J, et al. Cognitive impairment in psychotic disorders is associated with brain reductive stress and impaired energy metabolism as measured by 31P Magnetic Resonance Spectroscopy. Schizophr Bull. 2025:sbaf003. https://doi.org/10.1093/schbul/sbaf003.

  5. Du F, Cooper AJ, Thida T, Sehovic S, Lukas SE, Cohen BM, et al. In Vivo Evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31p magnetization transfer spectroscopy. JAMA Psychiatry. 2014;71:19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion. 2021;56:91–101.

    Article  PubMed  Google Scholar 

  7. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. New Engl J Med. 2003;348:2656–68.

    Article  PubMed  Google Scholar 

  8. Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One. 2009;4:e4913.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bulduk BK, Tortajada J, Valiente-Pallejà A, Callado LF, Torrell H, Vilella E, et al. High number of mitochondrial DNA alterations in postmortem brain tissue of patients with schizophrenia compared to healthy controls. Psychiatry Res. 2024;337:115928.

  10. Kumar P, Efstathopoulos P, Millischer V, Olsson E, Wei YBin, Brüstle O, et al. Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep. 2018;8:12743.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Verge B, Alonso Y, Valero J, Miralles C, Vilella E, Martorell L. Mitochondrial DNA (mtDNA) and schizophrenia. European Psychiatry. 2011;26:45–56.

    Article  PubMed  Google Scholar 

  12. Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller FJ, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76.

    Article  PubMed  Google Scholar 

  13. Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis. 2016;90:3–19.

    Article  PubMed  Google Scholar 

  14. Shi R, Guberman M, Kirshenbaum LA. Mitochondrial quality control: the role of mitophagy in aging. Trends Cardiovasc Med. 2018;28:246–60.

    Article  PubMed  Google Scholar 

  15. Stephens OR, Grant D, Frimel M, Wanner N, Yin M, Willard B, et al. Characterization and origins of cell-free mitochondria in healthy murine and human blood. Mitochondrion. 2020;54:102–12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stier A. Human blood contains circulating cell-free mitochondria, but are they really functional?. American J Physiol-Endocrinol Metab. 2021;320:E859–E863.

    Article  Google Scholar 

  17. Pérez-Treviño P, Velásquez M, García N. Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases. Biochimica et Biophys. Acta (BBA) - Mol Basis Dis. 2020;1866:165761.

    Article  Google Scholar 

  18. García-De La Cruz DD, Juárez-Rojop IE, Tovilla-Zárate CA, Martínez-Magaña JJ, Genis-Mendoza AD, Nicolini H, et al. Association between mitochondrial DNA and cognitive impairment in schizophrenia: Study protocol for a Mexican population. Neuropsychiatr Dis Treat. 2019;15:1717–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li S, Jiang J, Zhu W, Wang D, Dong C, Bu Y, et al. Increased cell-free DNA is associated with oxidative damage in patients with schizophrenia. J Psychiatr Res. 2024;175:20–28.

    Article  PubMed  Google Scholar 

  20. Ouyang H, Huang M, Xu Y, Yao Q, Wu X, Zhou D. Reduced cell-free mitochondrial DNA levels were induced by antipsychotics treatment in first-episode patients with schizophrenia. Front Psychiatry. 2021;12:652314.

  21. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Article  PubMed  Google Scholar 

  22. Xue T, Liu W, Wang L, Shi Y, Hu Y, Yang J, et al. Extracellular vesicle biomarkers for complement dysfunction in schizophrenia. Brain. 2024;147:1075–86.

    Article  PubMed  Google Scholar 

  23. Melentijevic I, Toth ML, Arnold ML, Guasp RJ, Harinath J, Nguyen KC, et al. C. Elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 2017;542:367–71.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goetzl EJ, Srihari VH, Guloksuz S, Ferrara M, Tek C, Heninger GR. Neural cell-derived plasma exosome protein abnormalities implicate mitochondrial impairment in first episodes of psychosis. FASEB J. 2021;35:e21339.

    Article  PubMed  Google Scholar 

  25. Benarroch E. What Is the role of lactate in brain metabolism, plasticity, and neurodegeneration?. Neurology. 2024;102:e209378.

    Article  PubMed  Google Scholar 

  26. Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, et al. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. 2021. 2021. https://doi.org/10.7554/eLife.

  27. Chiappelli J, Savransky A, Ma Y, Gao S, Kvarta MD, Kochunov P, et al. Impact of lifetime stressor exposure on neuroenergetics in schizophrenia spectrum disorders. Schizophr Res. 2024;269:58–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dogan AE, Yuksel C, Du F, Chouinard VA, Öngür D. Brain lactate and pH in schizophrenia and bipolar disorder: A systematic review of findings from magnetic resonance studies. Neuropsychopharmacology. 2018;43:1681–90.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, et al. Elevated brain lactate in schizophrenia: A 7T magnetic resonance spectroscopy study. Transl Psychiatry. 2016;6,e967.

  30. Liu S, Zhang L, Fan X, Wang G, Liu Q, Yang Y, et al. Lactate levels in the brain and blood of schizophrenia patients: A systematic review and meta-analysis. Schizophr Res. 2024;264:29–38.

    Article  PubMed  Google Scholar 

  31. Sullivan CR, Mielnik CA, Funk A, O’Donovan SM, Bentea E, Pletnikov M, et al. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci Rep. 2019;9,5087.

  32. Nugent KL, Chiappelli J, Rowland LM, Daughters SB, Hong LE. Distress intolerance and clinical functioning in persons with schizophrenia. Psychiatry Res. 2014;220:31–36.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Da Silva T, Wu A, Laksono I, Prce I, Maheandiran M, Kiang M, et al. Mitochondrial function in individuals at clinical high risk for psychosis. Sci Rep. 2018;8,6216.

  34. Roberts RC, Barksdale KA, Roche JK, Lahti AC. Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia. Schizophr Res. 2015;168:543–53.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akter M, Hasan M, Ramkrishnan AS, Iqbal Z, Zheng X, Fu Z, et al. Astrocyte and L-lactate in the anterior cingulate cortex modulate schema memory and neuronal mitochondrial biogenesis. Elife. 2023;12:e85751.

  36. Zemirli N, Morel E, Molino D. Mitochondrial dynamics in basal and stressful conditions. Int J Mol Sci. 2018;19:564.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Picard M, McEwen BS. Psychological stress and mitochondria: a conceptual framework. Biopsychosocial Sci Med. 2018;80:126–40.

    Google Scholar 

  38. Van Os J, Selten J-P. Prenatal exposure to maternal stress and subsequent schizophrenia: the May 1940 invasion of the Netherlands. British J Psychiatry. 1998;172:324–6.

    Article  Google Scholar 

  39. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, et al. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry. 2008;65:146–52.

    Article  PubMed  Google Scholar 

  40. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, et al. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective-and cross-sectional cohort studies. Schizophr Bull. 2012;38:661–71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Docherty NM, St-Hilaire A, Aakre JM, Seghers JP. Life events and high-trait reactivity together predict psychotic symptom increases in schizophrenia. Schizophr Bull. 2009;35:638–45.

    Article  PubMed  Google Scholar 

  42. Beards S, Gayer-Anderson C, Borges S, Dewey ME, Fisher HL, Morgan C. Life events and psychosis: a review and meta-analysis. Schizophr Bull. 2013;39:740–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tripathi A, Bartosh A, Whitehead C, Pillai A. Activation of cell-free mtDNA-TLR9 signaling mediates chronic stress-induced social behavior deficits. Mol Psychiatry. 2023;28:3806–15.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Krolow R, Noschang C, Weis SN, Pettenuzzo LF, Huffell AP, Arcego DM, et al. Isolation stress during the prepubertal period in rats induces long-lasting neurochemical changes in the prefrontal cortex. Neurochem Res. 2012;37:1063–73.

    Article  PubMed  Google Scholar 

  45. Ridout KK, Coe JL, Parade SH, Marsit CJ, Kao H-T, Porton B, et al. Molecular markers of neuroendocrine function and mitochondrial biogenesis associated with early life stress. Psychoneuroendocrinology. 2020;116:104632.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ruigrok SR, Yim K, Emmerzaal TL, Geenen B, Stöberl N, den Blaauwen JL, et al. Effects of early-life stress on peripheral and central mitochondria in male mice across ages. Psychoneuroendocrinology. 2021;132:105346.

    Article  PubMed  Google Scholar 

  47. Woods SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry. 2003;64:663–7.

    Article  PubMed  Google Scholar 

  48. Overall JE, Gorham DR. The brief psychiatric rating scale. Psychol Rep. 1962;10:799–812.

    Article  Google Scholar 

  49. Kirkpatrick B, Strauss GP, Nguyen L, Fischer BA, Daniel DG, Cienfuegos A, et al. The brief negative symptom scale: psychometric properties. Schizophr Bull. 2011;37:300–5.

    Article  PubMed  Google Scholar 

  50. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus Negl. 2003;27:169–90.

    Article  Google Scholar 

  51. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24:385–96.

  52. Mullins PG, McGonigle DJ, O’Gorman RL, Puts NAJ, Vidyasagar R, Evans CJ, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage. 2014;86:43–52.

    Article  PubMed  Google Scholar 

  53. Yoon SH, Park CM, Lee CH, Song I-C, Lee HJ, Goo JM. Feasibility of In vivo proton magnetic resonance spectroscopy for lung cancer. Journal Korean Soc Magn Reson Med. 2012;16:40–46.

    Article  Google Scholar 

  54. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, et al. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry. 2016;6:e967.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Erbay MF, Zayman EP, Erbay LG, Ünal S. Evaluation of transcranial magnetic stimulation efficiency in major depressive disorder patients: A magnetic resonance spectroscopy study. Psychiatry Investig. 2019;16:745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Soeiro-De-Souza MG, Pastorello BF, Leite DaCosta, Henning C, Moreno A, Otaduy RA. MCG. Dorsal anterior cingulate lactate and glutathione levels in euthymic bipolar i disorder: 1H-MRS study. Int J Neuropsychopharmacol. 2016;19:1–8.

    Article  Google Scholar 

  57. Batistuzzo MC, Sottili BA, Shavitt RG, Lopes AC, Cappi C, de Mathis MA, et al. Lower ventromedial prefrontal cortex glutamate levels in patients with obsessive–compulsive disorder. Front Psychiatry. 2021;12:668304.

  58. Koush Y, de Graaf RA, Kupers R, Dricot L, Ptito M, Behar KL, et al. Metabolic underpinnings of activated and deactivated cortical areas in human brain. Journal Cereb Blood Flow Metab. 2021;41:986–1000.

    Article  Google Scholar 

  59. Xu J, Dydak U, Harezlak J, Nixon J, Dzemidzic M, Gunn AD, et al. Neurochemical abnormalities in unmedicated bipolar depression and Mania: A 2D 1H MRS Investigation. Psychiatry Res. 2013;213:235.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Quadrelli S, Mountford C, Ramadan S. Hitchhiker’S Guide to Voxel Segmentation for Partial Volume Correction of in Vivo Magnetic Resonance Spectroscopy. Magn Reson Insights. 2016;9:MRI.S32903.

    Article  Google Scholar 

  61. Near J, Harris AD, Juchem C, Kreis R, Marjańska M, Öz G, et al. Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed. 2021;34:e4257.

  62. Regenold WT, Phatak P, Marano CM, Sassan A, Conley RR, Kling MA. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry. 2008;65:489.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–4.

    Article  PubMed  Google Scholar 

  64. Zöllner HJ, Davies-Jenkins CW, Murali-Manohar S, Gong T, Hui SCN, Song Y, et al. Feasibility and implications of using subject-specific macromolecular spectra to model short-TE MRS data. NMR Biomed. 2022;36:e4854.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Trumpff C, Michelson J, Lagranha CJ, Taleon V, Karan KR, Sturm G, et al. Stress and circulating cell-free mitochondrial DNA: A systematic review of human studies, physiological considerations, and technical recommendations. Mitochondrion. 2021;59:225–45.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Maggo S, North LY, Ozuna A, Ostrow D, Grajeda YR, Hakimjavadi H, et al. A method for measuring mitochondrial DNA copy number in pediatric populations. Front Pediatr. 2024;12:1401737.

  67. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.

    Article  PubMed  Google Scholar 

  68. Zhang L, Deng S, Zhao S, Ai Y, Zhang L, Pan P, et al. Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via toll-like receptor 9. Int J Mol Sci. 2016;17:1425.

  69. Wiersma M, van Marion DMS, Bouman EJ, Li J, Zhang D, Ramos KS, et al. Cell-free circulating mitochondrial dna: A potential blood-based marker for atrial fibrillation. Cells. 2020;9:1159.

  70. Sprenger H-G, Langer T. The good and the bad of mitochondrial breakups. Trends Cell Biol. 2019;29:888–900.

    Article  PubMed  Google Scholar 

  71. Neustadt J, Pieczenik SR. Medication-induced mitochondrial damage and disease. Mol Nutr Food Res. 2008;52:780–8.

    Article  PubMed  Google Scholar 

  72. Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res. 2019;217:136.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cakir Y, Yang Z, Knight CA, Pompilius M, Westbrook D, Bailey SM, et al. Effect of alcohol and tobacco smoke on mtDNA damage and atherogenesis. Free Radic Biol Med. 2007;43:1279–88.

    Article  PubMed  Google Scholar 

  74. Yang Z, Harrison CM, Chuang GC, Ballinger SW. The role of tobacco smoke induced mitochondrial damage in vascular dysfunction and atherosclerosis. Mutation Res/Fundam Mol Mech Mutagen. 2007;621:61–74.

    Article  Google Scholar 

  75. Norman M, Ter-Ovanesyan D, Trieu W, Lazarovits R, Kowal EJK, Lee JH, et al. L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nat Methods. 2021;18:631–4.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nogueras-Ortiz CJ, Eren E, Yao P, Calzada E, Dunn C, Volpert O, et al. Single-extracellular vesicle (EV) analyses validate the use of L1 cell adhesion molecule (L1CAM) as a reliable biomarker of neuron-derived EVs. J Extracell Vesicles. 2024;13:e12459.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Santos C, Martinez M, Lima M, Hao Y-J, Simoes N, Montiel R. Mitochondrial DNA mutations in cancer: a review. Curr Top Med Chem. 2008;8:1351–66.

    Article  PubMed  Google Scholar 

  78. Smith ALM, Whitehall JC, Greaves LC. Mitochondrial DNA mutations in ageing and cancer. Mol Oncol. 2022;16:3276–94.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Khotina VA, Vinokurov AY, Sinyov VV, Zhuravlev AD, Popov DY, Sukhorukov VN, et al. Mitochondrial dysfunction associated with mtDNA mutation: mitochondrial genome editing in atherosclerosis research. Curr Med Chem. 2024. 2024.

  80. Risi B, Imarisio A, Cuconato G, Padovani A, Valente EM, Filosto M. Mitochondrial DNA (mtDNA) as fluid biomarker in neurodegenerative disorders: A systematic review. Eur J Neurol. 2025;32:e70014.

  81. Fuke S, Kametani M, Kato T. Quantitative analysis of the 4977-bp common deletion of mitochondrial DNA in postmortem frontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett. 2008;439:173–7.

    Article  PubMed  Google Scholar 

  82. Mamdani F, Rollins B, Morgan L, Sequeira PA, Vawter MP. The somatic common deletion in mitochondrial DNA is decreased in schizophrenia. Schizophr Res. 2014;159:370–5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Win PW, Singh SM, Castellani CA. Mitochondrial DNA Copy Number and Heteroplasmy in Monozygotic Twins Discordant for Schizophrenia. Twin Res Hum Genet. 2023;26:280–9.

    Article  PubMed  Google Scholar 

  84. San-Millan I, Sparagna GC, Chapman HL, Warkins VL, Chatfield KC, Shuff SR, et al. Chronic lactate exposure decreases mitochondrial function by inhibition of fatty acid uptake and cardiolipin alterations in neonatal rat cardiomyocytes. Front Nutr. 2022;9.

  85. Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol. 2021;599:863–88.

    Article  PubMed  Google Scholar 

  86. Takahashi K, Tamura Y, Kitaoka Y, Matsunaga Y, Hatta H. Effects of lactate administration on mitochondrial respiratory function in mouse skeletal muscle. Front Physiol. 2022;13.

  87. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. 1999;96:1129–34.

  88. Kochunov P, Ma Y, Hatch KS, Gao S, Acheson A, Jahanshad N, et al. Ancestral, pregnancy, and negative early-life risks shape children’s brain (Dis)similarity to Schizophrenia. Biol Psychiatry. 2023;94:332–40.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Robison RK, Haynes JR, Ganji SK, Nockowski CP, Kovacs Z, Pham W, et al. J-Difference editing (MEGA) of lactate in the human brain at 3T. Magn Reson Med. 2023;90:852–62.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Maier S, Nickel K, Lange T, Oeltzschner G, Dacko M, Endres D, et al. Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study. Mol Autism. 2023;14.

  91. Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: A potential window into brain pathologic processes. Front Neurosci. 2017;11:278.

Download references

Funding

Funding support was received from NIH grants R01MH133812, R01MH116948, R01MH112180 (LEH), MH120876 and MH128771 (AP).

Author information

Authors and Affiliations

Authors

Contributions

AA, AT, AKP and LEH wrote the paper; LEH and AKP obtained funding. AA, AT, BP, YM, JJC, SI, BA, and PK contributed to data collection, processing, and/or analysis, all contributed to manuscript editing, critical revision, and approved the final version of the manuscript.

Corresponding author

Correspondence to A. Ankeeta.

Ethics declarations

Competing interests

LEH has received or plans to receive research funding or consulting fees on research projects from Mitsubishi, Your Energy Systems LLC, Neuralstem, Taisho, Heptares, Pfizer, Luye Pharma, IGC Pharma, Sound Pharma, Regeneron, Takeda, and Alto Neuroscience. Other authors declare no conflicts of interest with respect to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankeeta, A., Tripathi, A., Pillai, B. et al. Blood and neuronal extracellular vesicle mitochondrial disruptions in schizophrenia. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02204-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02204-1

Search

Quick links