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Perinatal asphyxia remains a leading cause of neonatal mortality and a major contributor to permanent neurological deficits. Even
mild cases can result in long-term neurodevelopmental, cognitive, behavioural and psychiatric disorders. However, the mechanisms
underlying asphyxia-induced hypoxic-ischaemic brain injury remain poorly understood, limiting the development of targeted
interventions during the critical early plastic period. To explore the behavioural and molecular outcomes of perinatal asphyxia that
may model important aspects of neuropsychiatric disorders observed in humans, we utilised a translationally relevant, non-invasive
oxygen deprivation model of asphyxia in postnatal day 7 rats. We conducted a comprehensive assessment of asphyxia-induced
changes, integrating neurobehavioural profiling (evaluating cognitive, emotional, social and neuromotor functions), microglial
morphology analysis, neuroimaging, stress hormone measurement and whole-transcriptome sequencing techniques to elucidate
the acute and long-term functional consequences. Consistent with clinical observations, the extensive functional assessment
revealed distinct sex-dependent effects, including increased anxiety and impulsivity, attention deficits and impaired inhibitory
control, which were observed exclusively in males, with no apparent sensorimotor deficits. This phenotype resembling attention
deficit hyperactivity disorder (ADHD) in adult rats was associated with a lasting increase in inhibitory bouton densities in the medial
prefrontal cortex. The development of an acute inflammatory response after perinatal asphyxia marked by phenotypic
transformation of microglia, paralleled brain perfusion and stress hormone changes. Notably, microglial changes were mitigated by
the blockade of proinflammatory interleukin-1 signalling via systemic IL-1 receptor antagonist (IL-1RA) administration in a
therapeutically relevant time window. Importantly, early blockade of proinflammatory responses was able to prevent cognitive
deficits in adulthood and normalise inhibitory bouton densities. RNA sequencing analysis revealed asphyxia-induced dysregulation
of molecular pathways targeting GABAergic signalling, potentially contributing to subsequent morphological and neuropsychiatric
alterations. IL-1RA treatment appeared to engage distinct epigenetic regulatory mechanisms, rather than merely reversing these
disruptions in the acute post-asphyxia period. Collectively, these findings demonstrate that perinatal asphyxia induces marked
behavioural deficits in attention and inhibitory control, paralleled by lasting inhibitory and epigenetic dysregulation, preceded by
acute induction of microglia-driven inflammatory processes in the medial prefrontal cortex. Systemic IL-1RA administration may
represent a promising therapeutic opportunity to prevent long-term cognitive impairments caused by perinatal asphyxia.
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INTRODUCTION
To date, perinatal asphyxia (PA) remains a substantial burden on
healthcare systems worldwide and a leading cause of child
mortality, accounting for approximately 23% of all newborn
deaths globally (World Health Organisation, 2022). Among infants

who survive PA, roughly 25% develop permanent neurological
disabilities, ranging from cerebral palsy, epilepsy and cerebral
visual impairment to a spectrum of neuropsychiatric disorders,
while potentially sustaining multi-organ injury beyond the brain
[1, 2]. Even mild to moderate PA, without significant sensorimotor
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sequelae, is linked to neurodevelopmental disorders, including
attention-deficit hyperactivity disorder (ADHD) [3, 4], autism
spectrum disorder [5], cognitive and communication deficits
[2, 6–8], or stress-related psychiatric diagnoses, such as anxiety
or affective disorders [9, 10].
Despite the enormous public health problem caused by PA and

the extensive preclinical efforts to understand disease mechan-
isms, whole-body hypothermia remains the primary, most
efficient, nonetheless a broadly non-specific therapeutic approach
for moderate to severe birth asphyxia [11–13]. However, studies
suggest that despite therapeutic cooling, a significant proportion
of surviving neonates -estimated at approximately 30%- may still
develop long-term neuropsychiatric deficits [12, 14]. Furthermore,
the effectiveness of hypothermia treatment in low- and middle-
income countries remains under discussion [13, 15, 16]. Inflamma-
tion is increasingly recognised as a key contributor to PA-induced
brain injury, affecting neuronal circuits, glial cells and cerebral
perfusion [17–19]. In line with this, clinical and preclinical studies
confirm the functional role of inflammation in the development of
cognitive impairments in several neuropsychiatric conditions,
including neurodevelopmental disorders [20–24].
Early life stress paradigms, known to activate the hypothalamic-

pituitary axis (HPA axis), have been demonstrated to trigger
lasting changes in microglia functioning, affecting their density
and phenotype (soma size, length and thickness of processes),
and inflammatory responses, thereby disrupting their develop-
mental programmes [25]. Moreover, inflammatory mediators and
altered glial cell phenotypes have been implicated in shaping the
trajectory of injury in brain regions responsible for higher-order
cognitive processing via interactions with synaptic elements,
which are particularly vulnerable to neonatal hypoxic-ischaemic
damage [26–31]. Phenotypic transformation involving an increase
in soma size and reduction of branching of microglial cells and
related production of proinflammatory mediators such as
interleukin-1 (IL-1) are well-established contributors to oxidative
stress and neural damage [32–35]. Elevated levels of IL-1 have
been strongly associated with the severity of PA [36]. Notably,
microglial dysfunction and IL-1 actions markedly alter cerebral
perfusion under both physiological conditions and after ischaemia
[37, 38]. Nevertheless, the causal mechanisms by which these
neuroimmunological interactions mediate long-term cognitive
dysfunction in mild to moderate PA remain to be elucidated.
The medial prefrontal cortex (mPFC) is an essential region for

top-down control of decision-making and behavioural regulation,
playing a significant role in attention and emotional functioning
[39, 40]. Dysfunction in the mPFC has been implicated in various
neurodevelopmental disorders [41, 42], and has been linked to the
effects of early-life adversities [43, 44]. Hence, this study focused
on the functional, histological and molecular alterations in the
mPFC induced by PA.
The main goal of this study was to investigate the putative

neuroinflammatory mechanisms through which PA may contri-
bute to the subsequent behavioural and histological alterations
observed in adulthood, with an outlook on acute cerebral
perfusion and gene expression. To this end, we utilised a
translationally relevant non-invasive rodent model of mild to
moderate PA, which enabled us to decipher the role of microglial
activation in influencing disease progression via acute pharmaco-
logical intervention. This approach aimed to provide important
insights into the pathophysiology of PA-induced neuropsychiatric
impairments and identify potential therapeutic targets for
mitigating the long-term consequences of PA.

MATERIALS AND METHODS
Animals
Experiments followed the European Communities Council Directive (2010/
63/EU), the Council on Animal Care of the National Health Institution of

Hungary (PEI/001/828-4/2015) guidelines and were approved by the
Animal Welfare Committee of the HUN-REN Institute of Experimental
Medicine (HUN-REN IEM, Budapest, Hungary). Male and female Wistar rats
(Charles River Laboratories, Germany) from the HUN-REN IEM breeding
colony were used. Details on housing, breeding and pup handling are
provided in the Supplementary materials and methods.

Perinatal asphyxia insult (PA)
The approach for the PA insult was based on the seminal work of Pospelov
et al. [45], which established key methodological and physiological
foundations for this model by inducing pathophysiological alterations in
acid-base balance during PA [46–48] that closely resemble those observed
in human neonates. The model was further modified to suit our study
purposes. At P7, male and female pups were placed in isothermal
treatment chambers and received a PA-inducing gas mixture (4% O2 and
20% CO2 in N2) for 15min. Details about the PA induction are provided in
the Supplementary materials and methods.

Behavioural testing
Several cohorts of animals were used for behavioural assessment to avoid
over-testing and minimise potential inter-test effects. The overall structure
of behavioural testing and the specific tests assigned to each cohort are
provided in a Supplementary Table 4. Animals were tested on P8 for acute
severity scoring and at juvenile and adult ages for long-lasting effects.
Detailed description of the behavioural tests appears in Supplementary
materials and methods.

Immunohistochemical studies
To examine the histological substrates of the phenotypic modifications, a
subset of P8 and adult male animals was anaesthetised and transcardially
perfused, and immunohistochemical staining was performed on mPFC
slices. Detailed description of fixation, tissue processing, fluorescent
immunostaining, synaptic puncta and microglial morphology analysis
appears in Supplementary materials and methods.

Acute hormone measurements
For the estimation of acute hormonal changes caused by PA, trunk blood
was collected from male pups at P7 in baseline conditions (less than 5min
after separation from dam) and after PA (0 h, 1 h, 4 h and 24 h post-PA).
ACTH, corticosterone and aldosterone concentrations were determined by
radioimmunoassay (RIA), measuring all samples in the same assay. Blood
sampling, hormone measurements and analysis are detailed in Supple-
mentary materials and methods.

SPECT and MRI imaging
The effect of PA on cerebral blood volume was assessed 24 h post-PA by
dextran-coated iron oxide nanoparticles determined by 1 Tesla MRI
volumetry [49]. Brain perfusion was measured by Single-Photon Emission
CT (SPECT) imaging with 99mTc-HMPAO (Hexamethylpropyleneamine
Oxime; Medi-Radiopharma Ltd., Budapest, Hungary). For methodological
details, see Supplementary materials and methods.

Pharmacological treatment
To assess and influence inflammation-related mechanisms in the transmis-
sion of PA-caused effects, male animals were treated with subcutaneous IL-1
receptor antagonist (IL-1RA, Kineret, Swedish Orphan Biovitrum AB) at a dose
of 100mg/kg. A volume of 10 μl/g IL-1RA dissolved in sterile 0.1% bovine
serum albumin (BSA) was diluted in phosphate-buffered saline (PBS) and
administered at 1 and 20 h after the PA insult to influence the primary and
secondary phase of PA-induced energy failure [50].

RNA sequencing and analysis
To decipher the acute gene expression changes caused by PA, brains of P8
and adult (6 months old) male animals were harvested under deep
anaesthesia, and bilateral medial prefrontal cortices were microdissected
(N= 8–10/treatment group). RNA isolation, library preparation and analysis
are detailed in the Supplementary materials and methods.

Statistical analysis
All measurements and analyses were performed in a blinded manner,
following the STAIR and ARRIVE guidelines. For details on blinding, sample
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size calculation and outlier exclusion, see Supplementary materials and
methods and Supplementary Tables 7 and 8. Behavioural data are
presented as mean ± SEM. Behavioural outcomes of male and female
treatment groups were analysed separately. Statistical analyses were
performed using GraphPad Prism 8.0.1, Python 3.10 and R 4.2 (microglia
analysis). Normality and variance assumptions were assessed using

Shapiro-Wilk and Brown-Forsythe tests (Supplementary Table 5). Two-
tailed unpaired t-tests were used when assumptions were met (t(df); p).
Otherwise, Mann-Whitney U tests were applied (U; p). For four-group
comparisons, two-way ANOVA with Tukey’s or Duncan’s post hoc tests was
used. Repeated measures ANOVA was used for multi-day behavioural
testing. Behavioural tests involving repeated measures were evaluated for
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the assumption of sphericity. Where violations were detected, corrections
were applied using Greenhouse-Geiser (GG) and Huynh-Feld (HF) estimates
(Supplementary Table 6). Degrees of freedom and exact p values are
reported; α was set at 0.05.

RESULTS
PA leads to long-term affective and cognitive dysfunction
in males
To investigate long-term functional consequences of PA, rats
underwent a comprehensive behavioural assessment during their
juvenile period or adulthood, first focusing on emotional, social
and cognitive domains. Adult PA animals exhibited higher anxiety,
revealed by reduced open arm exploration in the EPM (Fig. S1B;
Fig. 1B). Social affective functioning was also influenced by PA,
as suggested by decreased social sniffing during the social
interaction test (Fig. 1C). No differences were observed in play
behaviour during the play-fight test, sociability index in the
sociability test and territorial aggression in the resident-intruder
test (Fig. S1D–H).
Functional testing in automated operant systems revealed

substantial and specific deviances in the behaviour of PA animals
during both juvenile and adult periods. In the delay discounting
task, a sensitive test for the quantification of impulsive behaviour in
rodents [51], although both groups reached similar large reward
preference during training (Fig. S1I), PA animals showed a strong
tendency for enhanced motor impulsivity (Fig. 1D, E). Furthermore,
PA resulted in significant attention deficits in the 5-CSRTT in
adulthood. PA animals exhibited learning and attention impair-
ments, progressing more slowly through stages requiring higher
attentional performance. These deficits were particularly evident in
stages demanding task comprehension (stage 1) or requiring
shorter stimulus duration with fewer omissions (stage 6; Fig. 1F–H).
These behavioural findings of attention deficit, together with

increased impulsivity, imply an ADHD-like phenotypic shift in PA
animals, likely involving the mPFC [52]. To further investigate this
assumption, we performed the Go/no-Go task in adulthood
(modified for rodent testing; Fig. 1I), in which clinically diagnosed
ADHD patients often perform poorly [53]. Both treatment groups
executed the Go task requiring operant learning skills similarly
(Fig. S 1J; Fig. 1J). PA rats, however, presented a significant
decrease in correct no-Go responses during the no-Go phase,
indicating impaired inhibition of a previously learned operant
response (Fig. 1K). This suggests a deficit in withholding a
prepotent response, a core feature of ADHD-like behaviour. These
findings suggest a possible PA-related mPFC impairment, which
specifically targets behavioural response inhibition.
The absence of late-onset gross motor function and coordina-

tion deficits was confirmed by similar locomotion in juvenile and
adult OF tests and EPM (Fig. 1L, M; Fig. S1C) and latency to fall in

the accelerating rotarod test (Fig. 1N). These data underpin our
model’s suitability for studying asphyxia-related psychiatric
consequences, as motor deficits would potentially mask fine-
tuned emotional and cognitive disturbances.
We found no significant difference in working memory in the

Y-maze test at a juvenile age (Fig. S1K). PA animals displayed
decreased spatial learning and memory, as demonstrated by lower
correct response percentages in the hole-board test (Fig. S1L).
Adult PA animals showed impaired spatial learning in the Morris
Water Maze, taking significantly longer to find the hidden
platform over the trials (Fig. S1M).
To investigate the sex-dependency of the observed behavioural

alterations, female animals underwent targeted assessment. As
early-life adversities have been shown to affect emotional
regulation in females [54, 55], we also investigated associative
emotional learning in the conditioned fear learning paradigm.
Female PA animals did not exhibit motor alterations in the OF (Fig.
S2A). No differences were found in anxiety-like behaviour, fear
learning and acquisition and sociability between control and PA
females (Fig. S2B–E). Female PA animals showed no differences in
learning, memory or impulsivity during the set-shifted 5-CSRTT
when compared to female controls (Fig. S2F–H). Although females
may also exhibit molecular alterations, we focused downstream
analyses on males, as they showed the most robust behavioural
phenotype following PA, providing a stronger basis for investigat-
ing the underlying molecular mechanisms.

Long-term alteration of inhibitory synaptic markers in the
medial prefrontal cortex after PA in males
Given the established role of the mPFC in attention, memory and
behavioural inhibition by literature [39, 56–58], the behavioural
deficits observed in PA males in the current study may reflect
impairments in mPFC-dependent functions. Therefore, we inves-
tigated potential molecular alterations in the basic signalling
apparatus within this region in adults. Confocal imaging analysis
demonstrated no changes in neuronal numbers, indicated by the
density of NeuN(+) cells (Fig. S3A–C). However, there was a
notable increase in MBP(+) myelin basic protein density in the IL
(Fig. S3J–L). No quantitative differences were apparent in Iba1(+)
microglia and GFAP(+) astrocytes (Fig. S3D–I).
To further assess the molecular machinery underlying excitatory

and inhibitory neurotransmission that may be persistently affected
by PA [59], we quantified inhibitory (VGAT-positive) and excitatory
(VGLUT1- and VGLUT2-positive) boutons in the mPFC. Confocal
image analysis revealed a profound increase in VGAT(+) terminal
density in the infralimbic (IL) and prelimbic (PRL) subregions in PA
animals. In contrast, no changes were observed in VGLUT1(+) and
VGLUT2(+) excitatory bouton densities (Fig. 2A–G). Perisomatic
VGAT(+) boutons demonstrated an increased density surrounding

Fig. 1 Long-term behavioural consequences of the PA insult in males. A Experimental design and PA insult. Seven-day-old male Wistar rat
pups were subjected to 15min of exposure to an asphyxia-inducing gas mixture (4% O2, 20% CO2) under normothermic conditions. In
Experiment 1, different cohorts of animals underwent comprehensive behavioural testing from their juvenile period through adulthood,
followed by immunohistochemical or differential gene expression analysis of the prefrontal cortex, likely to be involved in the observed
deficits. In Experiment 2, animals were extensively characterised in the acute post-PA period (see Fig. 3). B Anxiety testing in the elevated plus-
maze performed in young adulthood revealed a significant decrease in time spent in the open arms in the PA group (U= 9, p= 0.022). C PA
animals showed slightly decreased social sniffing time in the social interaction test (U= 11, p= 0.031). D, E In the delay discounting task, PA
animals exhibited marked motor impulsivity, indicated by the progressive increase in inadequate responses with the lengthening delay (the
slope of the number of inadequate responses: t= 2.078, p= 0.055; insult × delay interaction F(7, 105)= 1.870, p= 0.081). F–H PA animals
presented learning and attention deficits in the 5-choice serial reaction time task (acquired stage: test day F(2.015, 22.17)= 72.73, p < 0.001;
treatment F(1,11)= 9.390, p= 0.010; test day × treatment interaction F(29,319)= 2.358, p < 0.001. PA animals were significantly slower in
acquiring the task and were less able to proceed to more difficult stages (stage F (1.801,19.82)= 14,34, p < 0.001; treatment F(1,11)= 7.421,
p= 0.019; stage × treatment interaction F(5,55)= 2.716, p= 0.029). This was the most prominent in stages 1 and 6. I–K In the Go/no-Go task,
although PA animals were able to learn the Go cue (J), they showed marked inhibitory deficits when presented with the no-Go stimulus (K;
trial day F(2.914,37.88)= 20.67, p < 0.001; treatment F(1,13)= 6.535, p= 0.023; trial day × treatment interaction F(12,156)= 2.028, p= 0.025). No
significant differences in gross neuro-motor functioning were apparent between treatment groups during juvenile (L) and long-term
assessment (M, N). Animals are depicted as individual data points. Error bars represent mean ± SEM; *p < 0.05; **p < 0.01; *** p < 0.001.
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KV2.1(+) pyramidal cells in the PRL and IL (Fig. 2H, I, L).
Colocalization analysis revealed elevation in VGAT boutons
associated with PV- and CB1-positive puncta around pyramidal
cells (Fig. 2J, K), indicating an increase in both interneuron types in
the close surroundings of PRL pyramidal cells. In contrast, the IL
region showed an increase only in CB1(+) perisomatic inhibitory

synapses around KV2.1(+) pyramidal cells (Fig. 2M, N). Notably, an
increase in inhibitory bouton density neighbouring PV(+) inter-
neurons was observed in both PRL and IL (Fig. 2O–Q).
To further elucidate the long-term molecular changes following

PA, we conducted RNA sequencing on mPFC samples from adult
PA and control males under baseline conditions. While gene-level
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differences did not reach statistical significance, gene set
enrichment revealed upregulation of pathways related to
epigenetic regulation and immune responses, and downregula-
tion of transport and signalling pathways (Fig. S6A, B). Hierarchical
clustering of altered pathways highlighted key domains involving
histone methylation, immune function, cell signalling and
membrane/synaptic transmission (Fig. S6C).

PA induces an acute stress hormone surge and mPFC
microglia phenotype alterations, without neurological deficits
To explore the potential acute functional alterations that may
contribute to the observed long-term behavioural and histological
changes, we conducted a comprehensive characterisation of the
first 24 h following PA in males, focusing on behaviour, stress
hormone levels, histological and brain-perfusion alterations.
Neurodevelopmental reflex tests [60] did not reveal group
differences in the righting reflex test, negative geotaxis test or
in ultrasonic vocalisation, indicating no early-onset robust
neurological deficits (Fig. 3A–C; Fig. S1A).
Stress hormone disruptions were evident acutely after PA.

A robust increase in blood ACTH levels was observed immediately
after the insult (Fig. 3D), followed by a rise in corticosterone
(Fig. 3E) and aldosterone levels (Fig. 3F) at 1-h post-PA.
Intriguingly, both groups exhibited low corticosterone levels,
reflecting reduced secretory capacity characterising the neonatal
stress-hyporesponsive period (SHRP).
As an acutely emerging local and systemic inflammatory

response plays a crucial role in the development of cognitive
impairments in various hypoxic-ischaemic brain injuries, morpho-
logical analysis of resident microglia was performed 24 h after PA
in the IL (Fig. 3G). PA led to acute microglial morphological
transformation, indicated by significantly decreased branch count
(Fig. 3H) and branch ramification (branching density; ramification
index; Fig. 3J, K) and tendentious increase in soma size (Fig. 3I).
Treatment groups presented similar numbers of microglia cell
density (Fig. S4A, B).

SPECT and MR imaging reveal subtle acute perfusion changes
caused by PA
For the quantitative assessment of central nervous system (CNS)
perfusion changes 24 h after PA, regional cerebral blood flow
(rCBF) and whole-brain blood volume were measured in males via
SPECT imaging using 99mTC-HMPAO and T1-weighted MRI,
respectively (Fig. 3L). No differences in overall cerebral blood
volume were identified (Fig. S4C). However, SPECT imaging
revealed a tendency towards increased relative perfusion in the
PFC (Fig. 3M) and thalamus (Fig. S4E) and a significant increase in
the cerebellum (Fig. S4F) in PA animals. These findings suggest the
presence of a relative post-insult increase in regional perfusion
and subtle circulatory disturbances acutely after PA.

IL-1RA ameliorates long-term deficits and influences microglia
morphology changes in PA males
To block IL-1 signalling, an endogenous competitive inhibitor, IL-
1RA, was administered in a therapeutically relevant time window,

at 1 h and 20 h after PA (Fig. 4A). To assess the long-term impact
of IL-1RA on emotional and cognitive domains, we focused on
evaluating anxiety and attention deficits in the EPM and 5-CSRTT
tests, which represented the most substantially affected beha-
vioural outcomes in our model. IL-1RA was able to prevent the
attention deficit observed in adult PA males during the 5-CSRTT.
Specifically, IL-1RA treatment increased the animals’ acquired
stage above control level (Fig. 4B, C), proposing a protective effect
of IL-1RA against PA-induced long-term attention and learning
difficulties. IL-1RA administration did not affect anxiety levels as
measured by time-percent spent in the open arm during the EPM
test (Fig. 4D).
Acute microglia morphology analysis revealed significant effects

of both PA and IL-1RA treatment in the PRL and IL regions of the
mPFC (methodology established by Clarke and colleagues [61]
and examining 62 parameters). In the PRL, IL-1RA had a reducing
effect on microglia soma size in PA males (Fig. 4E). However,
microglia branching was decreased in PA animals regardless of IL-
1RA treatment (Fig. 4F). In the IL, PA led to a significant increase in
microglia soma size (Fig. 4G). Additionally, IL-1RA treatment had a
significant effect on branch ramification in PA animals (Fig. 4H).
Correlation analysis of morphological features with treatment

groups confirmed that PA microglia exhibited larger somas.
Conversely, properties describing ramification, along with the
regression coefficients (slope of the linear regression between the
logarithm of branch number and the logarithm of radius), were
higher in the control group (Fig. S5A). Using a Random Forest
classifier (RF), we identified soma size, maximum branch number
and radii of maximum intersections as the most significant
parameters for distinguishing treatment groups (Fig. S5B).
Comparing the PA vehicle and PA IL-1RA groups, the average
branch length, number of intersections, and regression coeffi-
cients showed the strongest correlation with the treatment (Fig.
S5C). Furthermore, RF revealed lacunarity (a measure of inhomo-
geneity in the cell mask) as the most discriminating factor
between groups, alongside various properties related to ramifica-
tion and branching (Fig. S5D).
Histological analysis of VGAT puncta in adult males confirmed

the increase in inhibitory synaptic terminals caused by PA. This
was ameliorated by early IL-1RA treatment in the IL, but not in the
PRL (Fig. 4I, J).
These results demonstrate that acute administration of IL-1RA

can rapidly modulate microglial responses and influence long-
term inhibitory balance and behaviour, proposing a specific and
accessible therapeutic approach for PA-induced alterations.

Transcriptomic profiling reveals molecular pathways acutely
altered by PA
To elucidate the acute molecular and pathway alterations
following PA, we conducted RNA sequencing on mPFC samples
isolated 24 h post-insult. Differential gene expression analysis
revealed significant upregulation of the Dbp (D site of albumin
promoter binding protein) and Igsf9 (Immunoglobulin Superfamily
Member 9) genes, the latter crucial for inhibitory synapse
development. We observed downregulation in Col24a1, a collagen

Fig. 2 Confocal imaging reveals long-term alterations in mPFC inhibitory functioning after PA in males. A–G Long-term
immunohistochemical characterisation of medial prefrontal cortical synaptic boutons in PA males (Exp.1). A marked increase in the density
of VGAT(+) inhibitory terminals was observed in both the prelimbic (D; t(8)= 2.483, p= 0.037) and infralimbic (G; t(8)= 2.542, p= 0.034)
subregions of the mPFC in PA-exposed adults. In contrast, there were no changes in the bouton density of VGLUT1(+) and VGLUT2(+)
excitatory terminals (B, C; E, F). H–N Cell-type specific analysis of perisomatic boutons revealed a significant increase of VGAT(+) boutons in
the closeness of KV2.1(+) pyramidal somas in both PRL (I; U= 190222, p < 0.001) and IL (L; U= 219272, p < 0.001). Colocalization analysis of
VGAT and PV(+) or CB1(+) boutons revealed an increase in both bouton types in the PRL (J: PV(+) and VGAT(+ ): U= 230013, p < 0.001; K:
CB1(+) and VGAT(+): U= 291813, p < 0.001), but only CB1 in IL (N: VGAT(+) around KV2.1 U= 219272, p < 0.01; CB1(+) and VGAT(+):
U= 295865, p < 0.001). P, Q The density of inhibitory boutons around PV(+) interneurons was also significantly increased in both regions (PRL
U= 99215, p < 0.001; IL U= 50847, p < 0.001). Animals are depicted as individual data points in (B–G). Data are shown as normalised bouton
densities across experimental groups with median and quartiles on (I–Q). Error bars represent mean ± SEM; *p < 0.05.
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family member involved in extracellular matrix development. We
also noted the downregulation of Camk4, which encodes calcium/
calmodulin-dependent protein kinase type IV, a key mediator in
calcium signalling essential for neuronal and immune cell function
(Fig. 5A).

Functional gene set enrichment analysis revealed robust
suppression of pathways related to aerobic electron transport
and metabolic processes by PA, alongside activation of pathways
involved in altered epigenetic modifications (Fig. 5B). Significant
alterations were observed in ligand-gated anion channels and
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GABA receptor activities (Fig. 5C). Hierarchical clustering analysis
of pairwise similarities among significantly altered pathways
identified dominant clusters related to aerobic energy transport,
neurodevelopment, cell cycle regulation and membrane/synaptic
transmission (Fig. 5D). Finally, IL-1RA treatment in PA animals
resulted in substantial alterations in post-transcriptional and post-
translational modifications, and activation of detoxification path-
ways (Fig. 5E). These changes were accompanied by metabolic
pathway alterations (Fig. 5F), which may contribute to the rescued
phenotypes observed during behavioural and histological
analyses.

DISCUSSION
This study explores the contribution of acute neuroinflammatory
mechanisms to the long-term neuropsychiatric consequences of
PA with implications for early targeted therapeutic interventions.
We utilised a rodent PA model based on the foundational work of
Ala-Kurikka et al. [45, 46], partially modifying it to align with our
objectives to explore long-term behavioural consequences. This
model is translationally relevant to near-term human patients,
taking into account neocortical development [62–65] and the
pathophysiological changes in acid-base balance during PA
[46–48]. Our PA model does not involve carotid ligation and thus
does not induce focal injury or surgery-related inflammation,
which would shift the neuroimmunological characteristics of PA
towards directions less conducive to translational interpretation
[66, 67].
We used a top-down approach to study the consequences of

PA. Extensive behavioural assessment in both sexes was followed
by histological analyses, comprehensive gene expression profiling
and pharmacological intervention in male animals. Behavioural
data from males revealed specific neuropsychiatric deficits,
highlighting cognitive impairments, decreased attention and
learning performance, alongside emotional disturbances,
increased anxiety and impulsivity. The assembly of these
dysfunctions may be interpreted as a shift towards an ADHD-like
phenotype [68], a neurodevelopmental disorder frequently
comorbid with anxiety disorders in human patients [69]. This
phenotype has repeatedly been suggested as a potential
consequence of PA [4, 70–74]. Hence, our model may better
capture the heterogeneity of clinical outcomes observed in PA
survivors, reflecting a range of impairments- from subtle
behavioural deficits to more pronounced dysfunction- rather than
the uniformly severe alterations typically induced in standard
preclinical models [75–78].
The perinatal period is a critical phase of increased CNS

vulnerability, fundamental for healthy synaptogenesis, GABAergic
signalling, gliogenesis and myelination [79]. Previous studies on
PA have primarily focused on higher-order processing regions,

such as the frontal cortical areas, hippocampus and amygdala [80],
all heavily implicated in neurodevelopmental disorders [81, 82].
The mPFC is a key region for top-down control of various higher-
order cognitive processes, such as decision making, emotional
regulation and attention [39, 40]. Our model resulted in a lasting
increase in mPFC inhibitory synapses, while preserving neuronal
and excitatory bouton numbers in male animals. Disturbances in
inhibitory boutons of the mPFC have been associated with deficits
in attention, impulse control and anxiety-like behaviours [83, 84].
Such alterations could lead to broad neuropathologies in a critical
period of plasticity, potentially contributing to the neuropsychia-
tric consequences of PA. Our observations align with literature
suggesting that inhibitory interneurons are particularly vulnerable
to perinatal injuries and hypoxia due to their high metabolic
demands and reliance on oxidative phosphorylation [85–89]. This
supports the characterisation of neurodevelopmental disorders as
‘interneuronopathies’ [68, 90], emphasising GABAergic develop-
mental and circuit alterations as key histopathological features
[91, 92]. Furthermore, microglial responsiveness during develop-
ment is crucial for the refinement of neuronal circuits, particularly
those involving GABAergic signalling [93], which becomes critical
under pathological conditions.
Inflammation plays a key role in the perinatal programming of

neurodevelopmental disorders [94]. Microglial morphology, clo-
sely linked to transcriptomic and proteomic changes [35], serves
as a sensitive marker of inflammation. We examined acute PA-
induced morphological changes in microglia of males, and the
observed inflammatory transformation supports our model’s
applicability for investigating mechanisms of moderate PA.
Disturbed inflammatory niches could interfere with neurodeve-
lopmental programmes. Microglia influenced by early-life stress
have been demonstrated to lose their long-term synaptosome
phagocytotic function, leading to an increase in synaptic terminals
[95]. Furthermore, GABA-receptive microglia have been shown to
selectively interact with inhibitory synapses exclusively in the
postnatal period [96]. It could be hypothesised that PA leads to a
loss of this complex and specific function, affecting inhibitory
synapse development more prominently.
It remains unclear whether microglial IL-1RA, which has been

implicated in the molecular mechanisms of the inflammatory
response [97], plays a role in PA-related inflammatory changes or
if IL-1RA targets other cell types in this experimental model.
Nonetheless, IL-1-induced neuroinflammation is a well-established
contributor to oxidative stress and neuronal damage [27]. Our
findings support this notion, demonstrating that pharmacological
blockade of IL-1R resulted in altered microglial morphology in the
mPFC and partial amelioration of histological and behavioural
sequelae, particularly learning and attention in males. It is possible
that IL-1RA influences cognition, without significantly impacting
emotional behaviours like anxiety in this model. This domain-

Fig. 3 Acute effects of the PA insult in males. A–C Characterisation of the acute post-PA period, focusing on neuromotor functioning, stress
hormone levels and regional microglial morphological changes (Exp. 2). No significant alterations in gross neuromotor functioning and the
frequency of USV vocalisation were observed 24 h after PA. D–F PA leads to an acute burst of peripheral stress-related hormone levels in the
immediate post-PA period. ACTH: treatment F(1, 48)= 19.26, p < 0.001; sampling time F(1, 48)= 16.6, p < 0.001; treatment × sampling time
interaction F(3, 48)= 17.12, p < 0.001; Duncan’s post-hoc test for 0 h p < 0.001; corticosterone: treatment F(1, 48)= 2.714, p= 0.105; sampling
time F(1, 48)= 2.151, p= 0.106; treatment × sampling time interaction F(3, 48)= 3.111, p= 0.034; Duncan’s post-hoc test for 1 h p= 0.006;
aldosterone: treatment F(1, 35)= 10.815, p= 0.002; sampling time F(1, 35)= 3.643, p= 0.021; treatment × sampling time interaction F(1,
35)= 5.561, p= 0.003; Duncan’s post-hoc test for 1 h p < 0.001. G Representative confocal microscopy images of Iba1-positive microglia in the
IL show markedly decreased microglia branch count (H; U= 62163, p < 0.001), ramification index (J; calculated from the ratio of max
intersections and the number of primary branches; U= 68015, p= 0.068) and branch density (K; U= 63589, p < 0.001), and a tendency for
increased soma size (I; U= 67747, p= 0.065). Data shown represent microglial cells across experimental groups with median and quartile.
L Representative images of T1-weighted dextran-coated iron oxide contrast MRI (top) and 99mTC-HMPAO SPECT (bottom) neuroimaging
(P= PFC, T= Thalamus, C= Cerebellum) demonstrate regional cerebral blood flow and perfusion changes. The colour scale corresponds to
the relative intensity of radiotracer accumulation, with warmer colours indicating higher, while cooler colours indicating lower uptake.
M SPECT imaging shows strong tendencies in the prefrontal cortex compared to the brainstem of PA animals (U= 2, p= 0.063). Error bars
represent mean ± SEM; ***p < 0.001; *p < 0.05; #p < 0.07.
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specificity may be attributed to regional differences in microglial
functional characteristics, actions of IL-1 on other cells or the
differential influence of IL-1-signalling on circuitry-specific pro-
cesses, in line with brain regionspecific differences in therapeutic
sensitivity to IL-1RA. Also, distinct circuitries are involved in

regulating these behavioural domains. Attention and executive
control are heavily reliant on mPFC-thalamic-striatal circuits,
where IL-1 receptor expression follows a highly organised pattern
in adult rodents [98], and interleukins have been suggested to
modulate working memory and executive functions through
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effects on synaptic plasticity, neuroinflammation and neuronal
excitability [99]. In contrast, anxiety-like behaviours are more
strongly governed by amygdalar-hippocampal-hypothalamic net-
works [100], where IL-1 signalling may play a different role,
potentially involving neuromodulatory systems. The developmen-
tal stage of these circuits in our model adds further complexity, as
neuroimmune interactions may evolve with maturation. In
addition, the density and activation profile of microglia, as well
as the sensitivity of local circuits to IL-1RA, may vary substantially
across these regions [101]. These differences may underlie the
behavioural selectivity we observe. Further research is needed to
clarify how IL-1 modulates functionally distinct circuits and to
identify brain region-specific therapeutic sensitivities to IL-1RA.
Since inhibition of IL-1R is already employed in the manage-

ment of inflammatory disorders [102, 103], inhibiting microglial IL-
1 signalling appears to be feasible and translationally relevant for
the mitigation of neuroinflammation in the context of PA. Previous
preclinical studies on different models of early life disease have
demonstrated that IL-1RA can effectively reduce inflammation and
tissue injury, without reported side effects [104, 105]. However, the
immune-modulating properties of IL-1RA warrant careful con-
sideration, particularly in the context of neonatal immune
vulnerability. In adult human patient populations, although IL-
1RA is generally well tolerated, skin irritation and infectious
complications have been reported, particularly with long-term use
or in individuals with compromised immunity [106]. Importantly, a
recent clinical trial has begun to assess the safety, feasibility and
pharmacokinetics of IL-1RA administration in very preterm
neonates, which will help guide future applications in the
perinatal context [107].
Additionally, data from female subjects highlight the frequently

observed sex-dependent susceptibility to PA-induced neuropsy-
chiatric deficits [108]. This variability may be attributed, in part, to
sexual dimorphism in inflammatory responses and microglial
function in the perinatal period [109, 110].
Analysis of differentially expressed genes in the mPFC of PA

males underpinned marked acute synaptic deregulation. Notably,
upregulation of Igsf9 is known to be induced by hypoxia in neural
progenitor cells. Conversely, PA resulted in downregulation of
Col24a1, an extracellular matrix (ECM) component, potentially
disrupted by PA. Both are established regulators of axonal
outgrowth, synaptic differentiation and inhibitory synapse main-
tenance [111–113]. Also, Camk4 downregulation has been linked
to disrupted synaptic plasticity, learning deficits and anxiety in
rodents [114, 115]. Furthermore, the IL-1β has been shown to
cause deregulation of the circadian rhythm-related transcriptional

activator gene Dbp [116, 117]. Upregulation of Acss2 may play a
crucial role in Hypoxia-Inducible Factor 2 acetylation under
hypoxic conditions [118]. Our comprehensive gene set enrichment
analysis indicated PA-induced adjustment in mitochondrial energy
transport and ATP metabolism and alterations in cell cycle
regulation, aligning with previous literature [119, 120]. Notably,
the analysis highlighted changes in GABA-related signalling,
supporting our findings on increased sensitivity of inhibitory
synapses to PA.
Recent literature shows that the extent and nature of long-term

transcriptomic changes caused by PA appear to depend on injury
severity and compensatory mechanisms over time [121]. Our
pathway analysis in adult males revealed subtle alterations in
epigenetic regulation, along with changes in immune and
signalling pathways. These findings support the idea that long-
term effects of PA are mediated largely by epigenetic mechan-
isms, which can influence gene regulation without necessarily
producing large, sustained changes in steady-state mRNA levels
[122]. Epigenetic modifications have been implicated in activity-
dependent gene regulation during critical periods of brain
development, and their dysregulation may contribute to persis-
tent changes in neuronal function and behavioural outcomes
[123]. Furthermore, early-life stress may increase vulnerability to
subsequent challenges in adulthood [124], implying that differ-
ences in gene expression may potentially emerge following a
secondary stressor, highlighting the importance of investigating
such effects in future studies.
Acute IL-1RA treatment led to notable alterations in post-

transcriptional and post-translational processes, including histone
modification, mRNA splicing and protein methylation. PA may
trigger key regulators of cellular response to hypoxia, such as
Hypoxia-inducible factor 1 alpha (HIF-1α), which interacts with
histone acetyltransferases and deacetylases to modulate chroma-
tin accessibility [122]. Additionally, NF-κB-mediated inflammatory
responses, which are closely linked to chromatin remodelling, are
induced by IL-1β, proven to increase after PA [36, 125]. IL-1β also
regulates RNA-binding proteins and splicing factors, disrupting
normal mRNA processing under hypoxic stress [126]. These
pathways may be partially suppressed by pharmacological IL-1
inhibition. The fact that IL-1RA treatment modulated these
processes supports the hypothesis that neuroinflammatory
signalling can influence epigenetic modifications and suggests
that IL-1RA engages distinct regulatory mechanisms, rather than
directly counteracting the pathways disrupted by PA.
Pathological hyperperfusion changes, derived from neuroima-

ging of blood flow changes 24 h after the PA insult, are known to

Fig. 4 IL-1RA treatment prevents long-term attention deficits and shapes mPFC microglia morphology following PA. A Experimental
design for the short- and long-term assessment of targeted IL-1RA treatment. In experiment 3, long-term behavioural and histological
outcomes of IL-1RA treatment were examined. In experiment 4, acute changes caused by PA and IL-1RA in microglia morphology were
examined in the mPFC 24 h after PA. In experiment 5, gene expression changes caused by PA and IL-1RA were examined in mPFC via RNA
sequencing analysis, 24 h post-PA. B, C 5-CSRTT reveals a rescue effect of IL-1RA on attention and learning deficits in adult PA animals (trial day
F(2.203,96.95), p < 0.001; treatment F(3,44)= 3.421, p= 0.025; trial day × treatment interaction F(87,1276)= 2.786, p < 0.001). D The elevated
plus maze (EPM) test shows no effect of IL-1RA on anxiety levels in PA animals (PA treatment F(1,50)= 4.242, p= 0.044, IL-1RA treatment
F(1,50)= 0.022, p= 0.882). E–H Microglia morphology analysis 24 h post-PA in the PRL revealed a marked shaping effect of IL-1RA treatment
on microglia soma size in PA animals (PA treatment F(1, 2050)= 2.810, p= 0.093; IL-1RA treatment F(1, 2098)= 2.875, p= 0.090; PA × IL-1RA
interaction F(1, 2864)= 16.196, p < 0.001). Furthermore, PA led to decreased microglia branching (ramification index PA treatment F(1,
30.44)= 5.677, p= 0.017, IL-1RA treatment F(1,0.209)= 0.038, p= 0.843, PA × IL-1RA interaction F(1, 3.940)= 0.734, p= 0.391), unchanged by
IL-1RA. In the IL, PA significantly increased soma size with no substantial shaping effect of IL-1RA (PA treatment F(1, 17783)= 15.043, p < 0.001,
IL-1RA treatment F(1, 2875)= 2.986, p= 0.08, PA × IL-1RA interaction F(1, 173.14)= 0.179, p= 0.672). However, PA and IL-1RA treatment had a
significant interactive effect on branch ramification (ramification index: PA treatment F(1, 25.8)= 4.555, p= 0.032, IL-1RA treatment F(1,
2.359)= 0.416, p= 0.518, PA × IL-1RA interaction F(1, 3887)= 4.556, p= 0.041). I, J Inhibitory synapse numbers showed significant increase in
both PRL and IL of PA animals, while acute IL-1RA treatment showed a long-term therapeutic effect only in the IL (IL: PA treatment
F(1,156)= 7.762, p= 0.005; IL-1RA treatment F(1,156)= 10.886, p= 0.001, PA × IL-1RA treatment interaction F(1,156)= 3.564, p= 0.06; PRL: PA
treatment F(1,151)= 4.286, p= 0.04; IL-1RA treatment F(1,151)= 0.586, p= 0.44, PA × IL-1RA treatment interaction F(1,151)= 0.785, p= 0.376).
Data regarding inhibitory synapses are shown as normalised bouton densities across experimental groups with median and quartiles on (I, J).
5-CSRTT 5-choice serial reaction time task, IL infralimbic cortex, PRL prelimbic cortex. Error bars represent mean+ SEM; * PA treatment effect, #
IL-1RA treatment effect, & PA × IL-1RA interaction effect.
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trigger radical and nitric oxide-driven damage and inflammation
[127]. Interestingly, excessive relative perfusion was observed in
brain regions critical for cognitive and emotional functioning,
characterised by high metabolic activity during development,
rendering them particularly vulnerable to hypoxia [128, 129]. In

line with this, normal microglial function is essential for adaptation
to cerebral hypoperfusion [38], which may be disturbed by
inflammatory transformation. Hence, acute perfusion neuroima-
ging may be a valuable prognostic tool in cases of mild to
moderate PA [130].
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PA resulted in an acute burst in stress-related hormones,
demonstrating its capacity as an early-life stress paradigm that
activates the HPA axis [47]. Intriguingly, at P7 we observed
reduced levels of corticosterone alongside aldosterone and ACTH
increase, underscoring the distinctive characteristics of the
neonatal stress-hyporesponsive period, during which aldosterone
is implied to play a key role in the hormonal stress response [131].
This study has its limitations in the representation of peripartum

adaptive mechanisms and immunological milieu that certainly
affect the course of PA in human neonates. Moreover, future
studies combining male and female animals in a single cohort
should formally test interactions between sexes to provide formal
evidence of the differences in behavioural alterations. In addition,
females were not evaluated for oestrous cycle phases during
behavioural testing; doing so would have been challenging
without disrupting the integrity of complex, multi-day behavioural
studies. Incorporating such assessments will be essential for
obtaining a thorough understanding of how oestrous cycle phases
influence behaviour in future research. Our focus was primarily on
the mPFC, driven by the observed behavioural consequences of
PA. Other critical brain areas and circuits involved in higher-order
processing, and cell type-specific analysis of gene expression
changes warrant further investigation.
In conclusion, we employed a translationally relevant rodent

model of mild to moderate PA that provides a means to
investigate the subtle neuroinflammatory mechanisms underlying
behavioural alterations that manifest later—specifically in male
animals—and closely resemble those observed in human patients.
Our findings highlight both the short- and long-term therapeutic
effects of acutely administered targeted anti-inflammatory treat-
ment (IL-1RA) on the histological and behavioural consequences
of PA in males. These results suggest that IL-1RA may serve as a
promising therapeutic option for the early prevention of immune-
mediated cognitive deficits, useful for optimising treatment
strategies for PA in clinical settings.
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