Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Investigating hierarchical critical periods in human neurodevelopment

Abstract

Identifying when periods of enhanced neurobiological plasticity occur throughout the human cortex is foundational to understanding when different neural circuits and the psychological processes that they support will be most impacted by adverse and enriching environments. Animal research has identified “critical periods” of plasticity that occur in primary cortices and enable profound environment-dependent sculpting of sensory function early in life. Recent evidence suggests that critical periods may additionally occur in the human brain during childhood and adolescence, where they are hypothesized to unfold hierarchically across sensorimotor and association cortical regions. In this article, we consider neural, environmental, and behavioral evidence for hierarchical critical periods in human development. We review neuroimaging studies that have characterized the development of in vivo correlates of critical period plasticity and synthesize research that has explored when lower-order and higher-order cortical regions exhibit differential environmental sensitivity. We outline how the field is well-positioned to further investigate the precise nature, timing, and consequences of putative critical periods and summarize approaches to making progress in this area. We end by describing the relevance of critical periods for understanding youth psychiatric risk and for informing age-specific environmental enrichment interventions capable of supporting healthy development by fostering resiliency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An adolescent critical period of plasticity in murine association cortex.
Fig. 2: Human neuroimaging uncovers a hierarchical axis of child and adolescent cortical plasticity.
Fig. 3: Hierarchically-organized periods of heightened environmental sensitivity.
Fig. 4: Differentiating lifespan and critical period plasticity.

Similar content being viewed by others

References

  1. Larsen B, Sydnor VJ, Keller AS, Yeo BTT, Satterthwaite TD. A critical period plasticity framework for the sensorimotor–association axis of cortical neurodevelopment. Trends Neurosci. 2023;46:847–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, et al. Critical period regulation across multiple timescales. Proc Natl Acad Sci USA. 2020;117:23242–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. In: Merzenich MM, Nahum M, Van Vleet TM, editors. Progress in brain research, Vol. 207, Elsevier; 2013. p. 3–34.

  4. Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology. 2024;50:124–36.

    PubMed  Google Scholar 

  5. Gabard-Durnam L, McLaughlin KA. Sensitive periods in human development: charting a course for the future. Curr Opin Behav Sci. 2020;36:120–8.

    Google Scholar 

  6. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.

    PubMed  CAS  Google Scholar 

  7. Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev. 2018;94:179–95.

    PubMed  PubMed Central  Google Scholar 

  8. Lee HHC, Bernard C, Ye Z, Acampora D, Simeone A, Prochiantz A, et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol Psychiatry. 2017;22:680–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Kalish BT, Barkat TR, Diel EE, Zhang EJ, Greenberg ME, Hensch TK. Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes. Proc Natl Acad Sci. 2020;117:11744–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron. 2021;109:2820–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Nelson CA, Gabard-Durnam L. Early adversity and critical periods: neurodevelopmental consequences of violating the expectable environment. Trends Neurosci. 2020;43:133–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Sisk LM, Gee DG. Stress and adolescence: vulnerability and opportunity during a sensitive window of development. Current Opin Psychol. 2022;44:286–92.

    Google Scholar 

  13. Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, et al. Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013;7:102.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Luby JL, Herzberg MP, Hoyniak C, Tillman R, Lean RE, Brady R, et al. Basic environmental supports for positive brain and cognitive development in the first year of life. JAMA Pediatr. 2024;178:465–72.

    PubMed  PubMed Central  Google Scholar 

  15. Luby J, Baram TZ, Rogers C, Barch DM. Neurodevelopmental optimization after early life adversity: cross species studies to elucidate sensitive periods and brain mechanisms to inform early intervention. Trends Neurosci. 2020;43:744–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Vanderwert RE, Marshall PJ, Nelson CA, Zeanah CH, Fox NA. Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PLoS One. 2010;5:e11415.

    PubMed  PubMed Central  Google Scholar 

  17. Nelson CA, Fox NA, Zeanah CH. Romania’s abandoned children: the effects of early profound psychosocial deprivation on the course of human development. Curr Dir Psychol Sci. 2023;32:515–21.

    PubMed  PubMed Central  Google Scholar 

  18. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206:419–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Werker JF, Hensch TK. Critical periods in speech perception: new directions. Annu Rev Psychol. 2015;66:173–96.

    PubMed  Google Scholar 

  20. Hübener M, Bonhoeffer T. Neuronal plasticity: beyond the critical period. Cell. 2014;159:727–37.

    PubMed  Google Scholar 

  21. Dehorter N, Del Pino I. Shifting developmental trajectories during critical periods of brain formation. Front. Cell Neurosci. 2020;14:283.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Hensch TK, Quinlan EM. Critical periods in amblyopia. Visual Neurosci. 2018;35:E014.

    Google Scholar 

  23. Luciana M, Collins P.F. Is adolescence a sensitive period for the development of incentive-reward motivation? In: Andersen S.L., editor. Sensitive periods of brain development and preventive interventions. Cham: Springer International Publishing, 2022. p. 79–99.

  24. Hensch TK. Critical period regulation. Annu Rev Neurosci. 2004;27:549–79.

    PubMed  CAS  Google Scholar 

  25. Stern EA, Maravall M, Svoboda K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron. 2001;31:305–15.

    PubMed  CAS  Google Scholar 

  26. Lendvai B, Stern EA, Chen B, Svoboda K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature. 2000;404:876–81.

    PubMed  CAS  Google Scholar 

  27. Han YK, Köver H, Insanally MN, Semerdjian JH, Bao S. Early experience impairs perceptual discrimination. Nat Neurosci. 2007;10:1191–7.

    PubMed  CAS  Google Scholar 

  28. de Villers-Sidani E, Chang EF, Bao S, Merzenich MM. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J Neurosci. 2007;27:180–9.

    PubMed  PubMed Central  Google Scholar 

  29. Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. Nature. 2000;404:183–6.

    PubMed  CAS  Google Scholar 

  30. Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 1994;34:709–20.

    PubMed  CAS  Google Scholar 

  31. Di Cristo G, Chattopadhyaya B, Kuhlman SJ, Fu Y, Bélanger M-C, Wu CZ, et al. Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci. 2007;10:1569–77.

    PubMed  Google Scholar 

  32. Chattopadhyaya B, Cristo GD, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci. 2004;24:9598–611.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Fagiolini M, Fritschy J-M, Löw K, Möhler H, Rudolph U, Hensch TK. Specific GABAA circuits for visual cortical plasticity. Science. 2004;303:1681–3.

    PubMed  CAS  Google Scholar 

  34. Harauzov A, Spolidoro M, DiCristo G, Pasquale RD, Cancedda L, Pizzorusso T, et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci. 2010;30:361–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Cisneros-Franco JM, Villers-Sidani É, de. Reactivation of critical period plasticity in adult auditory cortex through chemogenetic silencing of parvalbumin-positive interneurons. Proc Natl Acad Sci. 2019;116:26329–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L, De Pasquale R, et al. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat Neurosci. 2007;10:679–81.

    PubMed  CAS  Google Scholar 

  37. Gu Y, Tran T, Murase S, Borrell A, Kirkwood A, Quinlan EM. Neuregulin-dependent regulation of fast-spiking interneuron excitability controls the timing of the critical period. J Neurosci. 2016;36:10285–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Moissidis M, Abbasova L, Alis R, Bernard C, Domínguez Y, Qin S, et al. A postnatal molecular switch drives the activity-dependent maturation of parvalbumin interneurons. [Preprint] 2024. Available from: https://doi.org/10.1101/2024.04.08.588555.

  39. Lensjø KK, Lepperød ME, Dick G, Hafting T, Fyhn M. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. J Neurosci. 2017;37:1269–83.

    PubMed  PubMed Central  Google Scholar 

  40. Faini G, Aguirre A, Landi S, Lamers D, Pizzorusso T, Ratto GM, et al. Perineuronal nets control visual input via thalamic recruitment of cortical PV interneurons. eLife. 2018;7:e41520.

    PubMed  PubMed Central  Google Scholar 

  41. Rochefort NL, Garaschuk O, Milos R-I, Narushima M, Marandi N, Pichler B, et al. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc Natl Acad Sci USA. 2009;106:15049–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Frye CG, MacLean JN. Spontaneous activations follow a common developmental course across primary sensory areas in mouse neocortex. J Neurophysiol. 2016;116:431–7.

    PubMed  PubMed Central  Google Scholar 

  43. Nakazawa S, Iwasato T. Spatial organization and transitions of spontaneous neuronal activities in the developing sensory cortex. Dev Growth Differ. 2021;63:323–39.

    PubMed  Google Scholar 

  44. Nakazawa S, Yoshimura Y, Takagi M, Mizuno H, Iwasato T. Developmental phase transitions in spatial organization of spontaneous activity in postnatal barrel cortex layer 4. J Neurosci. 2020;40:7637–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Golshani P, Gonçalves JT, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C. Internally mediated developmental desynchronization of neocortical network activity. J Neurosci. 2009;29:10890–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Innocenti GM, Price DJ. Exuberance in the development of cortical networks. Nat Rev Neurosci. 2005;6:955–65.

    PubMed  CAS  Google Scholar 

  47. Chini M, Pfeffer T, Hanganu-Opatz I. An increase of inhibition drives the developmental decorrelation of neural activity. eLife. 2022;11:e78811.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Chittajallu R, Isaac JTR. Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nat Neurosci. 2010;13:1240–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Singh SK, Stogsdill JA, Pulimood NS, Dingsdale H, Kim YH, Pilaz L-J, et al. Astrocytes assemble thalamocortical synapses by bridging Nrx1α and NL1 via hevin. Cell. 2016;164:183–96.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Gu Y, Huang S, Chang MC, Worley P, Kirkwood A, Quinlan EM. Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron. 2013;79:335–46.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Cruikshank SJ, Lewis TJ, Connors BW. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci. 2007;10:462–8.

    PubMed  CAS  Google Scholar 

  52. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 1999;98:739–55.

    PubMed  CAS  Google Scholar 

  53. Sugiyama S, Nardo AAD, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134:508–20.

    PubMed  CAS  Google Scholar 

  54. Gibel-Russo R, Benacom D, Di Nardo AA. Non-cell-autonomous factors implicated in parvalbumin interneuron maturation and critical periods. Front Neural Circuits. 2022;16:875873.

  55. Mataga N, Nagai N, Hensch TK. Permissive proteolytic activity for visual cortical plasticity. Proc Natl Acad Sci. 2002;99:7717–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Westacott LJ, Wilkinson LS. Complement dependent synaptic reorganisation during critical periods of brain development and risk for psychiatric disorder. Front Neurosci. 2022;16:840266.

    PubMed  PubMed Central  Google Scholar 

  57. Coulthard LG, Hawksworth OA, Woodruff TM. Complement: the emerging architect of the developing brain. Trends Neurosci. 2018;41:373–84.

    PubMed  CAS  Google Scholar 

  58. Mataga N, Mizuguchi Y, Hensch TK. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron. 2004;44:1031–41.

    PubMed  CAS  Google Scholar 

  59. Oray S, Majewska A, Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron. 2004;44:1021–30.

    PubMed  CAS  Google Scholar 

  60. Huang X, Stodieck SK, Goetze B, Cui L, Wong MH, Wenzel C, et al. Progressive maturation of silent synapses governs the duration of a critical period. Proc Natl Acad Sci USA. 2015;112:E3131–E40.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Dorrn AL, Yuan K, Barker AJ, Schreiner CE, Froemke RC. Developmental sensory experience balances cortical excitation and inhibition. Nature. 2010;465:932–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Toyoizumi T, Miyamoto H, Yazaki-Sugiyama Y, Atapour N, Hensch TK, Miller KD. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron. 2013;80:51–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Ribic A, Crair MC, Biederer T. Synapse-selective control of cortical maturation and plasticity by parvalbumin-autonomous action of SynCAM 1. Cell Rep. 2019;26:381–93.e6.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Ribic A, Biederer T. Emerging roles of synapse organizers in the regulation of critical periods. Neural Plast. 2019;2019:1538137.

    PubMed  PubMed Central  Google Scholar 

  65. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–51.

    PubMed  CAS  Google Scholar 

  66. Tomassy GS, Berger DR, Chen H-H, Kasthuri N, Hayworth KJ, Vercelli A, et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science. 2014;344:319–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Stedehouder J, Couey JJ, Brizee D, Hosseini B, Slotman JA, Dirven CMF, et al. Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans. Cerebral Cortex. 2017;27:5001–13.

    PubMed  CAS  Google Scholar 

  68. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science. 2005;309:2222–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Xin W, Kaneko M, Roth RH, Zhang A, Nocera S, Ding JB, et al. Oligodendrocytes and myelin limit neuronal plasticity in visual cortex. Nature. 2024;633:856–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Zemmar A, Chen C-C, Weinmann O, Kast B, Vajda F, Bozeman J, et al. Oligodendrocyte- and neuron-specific nogo-a restrict dendritic branching and spine density in the adult mouse motor cortex. Cereb Cortex. 2018;28:2109–17.

    PubMed  Google Scholar 

  71. Raiker SJ, Lee H, Baldwin KT, Duan Y, Shrager P, Giger RJ. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci. 2010;30:12432–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Morishita H, Miwa JM, Heintz N, Hensch TK. Lynx1, a cholinergic brake limits plasticity in adult visual cortex. Science. 2010;330:1238–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Disney AA, Aoki C, Hawken MJ. Gain modulation by nicotine in macaque V1. Neuron. 2007;56:701–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Gil Z, Connors BW, Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron. 1997;19:679–86.

    PubMed  CAS  Google Scholar 

  75. Sajo M, Ellis-Davies G, Morishita H. Lynx1 Limits dendritic spine turnover in the adult visual cortex. J Neurosci. 2016;36:9472–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Rowlands D, Lensjø KK, Dinh T, Yang S, Andrews MR, Hafting T, et al. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J Neurosci. 2018;38:10102–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Pöpplau JA, Schwarze T, Dorofeikova M, Pochinok I, Günther A, Marquardt A, et al. Reorganization of adolescent prefrontal cortex circuitry is required for mouse cognitive maturation. Neuron. 2024;112:421–40.e7.

    PubMed  PubMed Central  Google Scholar 

  78. Koss WA, Belden CE, Hristov AD, Juraska JM. Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse. 2014;68:61–72.

    PubMed  CAS  Google Scholar 

  79. Rios O, Villalobos J. Postnatal development of the afferent projections from the dorsomedial thalamic nucleus to the frontal cortex in mice. Dev Brain Res. 2004;150:47–50.

    CAS  Google Scholar 

  80. Benoit LJ, Holt ES, Posani L, Fusi S, Harris AZ, Canetta S, et al. Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function. Nat Neurosci. 2022;25:714–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Petersen D, Raudales R, Silva AK, Kellendonk C, Canetta S. Adolescent thalamoprefrontal inhibition leads to changes in intrinsic prefrontal network connectivity. eNeuro. 2024;11:ENEURO.0284-24.2024.

  82. Caballero A, Flores-Barrera E, Cass DK, Tseng KY. Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence. Brain Struct Funct. 2014;219:395–406.

  83. Miyamae T, Chen K, Lewis DA, Gonzalez-Burgos G. Distinct physiological maturation of parvalbumin-positive neuron subtypes in mouse prefrontal cortex. J Neurosci. 2017;37:4883–902.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Paylor JW, Lins BR, Greba Q, Moen N, de Moraes RS, Howland JG, et al. Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation. Sci Rep. 2016;6:37580.

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Bicks LK, Yamamuro K, Flanigan ME, Kim JM, Kato D, Lucas EK, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat Commun. 2020;11:1003.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Piekarski DJ, Boivin JR, Wilbrecht L. Ovarian hormones organize the maturation of inhibitory neurotransmission in the frontal cortex at puberty onset in female mice. Curr Biol. 2017;27:1735–45.e3.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Mastro K, Lee W-C, Wang W, Stevens B, Sabatini BL. Delayed developmental maturation of frontal cortical circuits impacts decision-making. [Preprint] 2025 Available from: https://doi.org/10.1101/2024.05.24.595609.

  88. Drzewiecki CM, Willing J, Juraska JM. Synaptic number changes in the medial prefrontal cortex across adolescence in male and female rats: a role for pubertal onset. Synapse. 2016;70:361–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Evrard MR, Li M, Shen H, Smith SS. Preventing adolescent synaptic pruning in mouse prelimbic cortex via local knockdown of α4βδ GABAA receptors increases anxiety response in adulthood. Sci Rep. 2021;11:21059.

    PubMed  PubMed Central  Google Scholar 

  90. Caballero A, Orozco A, Tseng KY. Developmental regulation of excitatory-inhibitory synaptic balance in the prefrontal cortex during adolescence. Semin Cell Dev Biol. 2021;118:60–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Drzewiecki CM, Willing J, Juraska JM. Influences of age and pubertal status on number and intensity of perineuronal nets in the rat medial prefrontal cortex. Brain Struct Funct. 2020;225:2495–507.

    PubMed  PubMed Central  Google Scholar 

  92. Baker KD, Gray AR, Richardson R. The development of perineuronal nets around parvalbumin GABAergic neurons in the medial prefrontal cortex and basolateral amygdala of rats. Behav Neurosci. 2017;131:289–303.

    PubMed  CAS  Google Scholar 

  93. Gildawie KR, Honeycutt JA, Brenhouse HC. Region-specific effects of maternal separation on perineuronal net and parvalbumin-expressing interneuron formation in male and female rats. Neuroscience. 2020;428:23–37.

    PubMed  CAS  Google Scholar 

  94. Falk EN, Norman KJ, Garkun Y, Demars MP, Im S, Taccheri G, et al. Nicotinic regulation of local and long-range input balance drives top-down attentional circuit maturation. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abe1527.

  95. Hijazi S, Pascual-García M, Nabawi Y, Kushner SA. A critical period for prefrontal cortex PV interneuron myelination and maturation [Preprint] 2025 Available from:https://doi.org/10.1101/2023.08.15.553393.

  96. Canetta SE, Holt ES, Benoit LJ, Teboul E, Sahyoun GM, Ogden RT, et al. Mature parvalbumin interneuron function in prefrontal cortex requires activity during a postnatal sensitive period. eLife. 2022;11:e80324.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Nabel EM, Garkun Y, Koike H, Sadahiro M, Liang A, Norman KJ, et al. Adolescent frontal top-down neurons receive heightened local drive to establish adult attentional behavior in mice. Nat Commun. 2020;11:3983.

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience–dependent oligodendrocyte maturation and myelination. Science. 2012;337:1357–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Bicks LK, Peng M, Taub A, Akbarian S, Morishita H. An adolescent sensitive period for social dominance hierarchy plasticity is regulated by cortical plasticity modulators in mice. Front Neural Circuits. 2021;15:676308.

  100. Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, et al. Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA. 2009;106:5743–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Bufill E, Agustí J, Blesa R. Human neoteny revisited: the case of synaptic plasticity. Am J Hum Biol. 2011;23:729–39.

    PubMed  Google Scholar 

  102. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA. 2012;109:16480–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Charvet CJ, Finlay BL. Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis. Brain Behav Evol. 2014;84:81–92.

    PubMed  Google Scholar 

  104. Sydnor VJ, Satterthwaite TD. Neuroimaging of plasticity mechanisms in the human brain: from critical periods to psychiatric conditions. Neuropsychopharmacology. 2022;48:1–2.

  105. Sydnor VJ, Bagautdinova J, Larsen B, Arcaro MJ, Barch DM, Bassett DS, et al. Human thalamocortical structural connectivity develops in line with a hierarchical axis of cortical plasticity. Nat Neurosci. 2025;28:1772–86.

  106. Lewis L, Corcoran M, Cho KIK, Kwak Y, Hayes RA, Larsen B, et al. Age-associated alterations in thalamocortical structural connectivity in youths with a psychosis-spectrum disorder. Schizophr. 2023;9:1–11.

    Google Scholar 

  107. Avery SN, Huang AS, Sheffield JM, Rogers BP, Vandekar S, Anticevic A, et al. Development of thalamocortical structural connectivity in typically developing and psychosis spectrum youths. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:782–92.

    PubMed  Google Scholar 

  108. Parr AC, Perica MI, Calabro FJ, Foran W, Moon CH, Hetherington H, et al. Adolescent maturation of dorsolateral prefrontal cortex glutamate:GABA and cognitive function is supported by dopamine-related neurobiology. Mol Psychiatry. 2024;30:2558–72.

  109. Takado Y, Takuwa H, Sampei K, Urushihata T, Takahashi M, Shimojo M, et al. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. J Cereb Blood Flow Metab. 2022;42:197–212.

    PubMed  CAS  Google Scholar 

  110. Sydnor VJ, Larsen B, Seidlitz J, Adebimpe A, Alexander-Bloch AF, Bassett DS, et al. Intrinsic activity development unfolds along a sensorimotor–association cortical axis in youth. Nat Neurosci. 2023;26:638–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Nishio M, Ellwood-Lowe ME, Woodburn M, McDermott CL, Park AT, Tooley UA, et al. The development of neural inhibition across species: insights from the Hurst exponent. J Neurosci. 2025;e0025252025. https://doi.org/10.1523/JNEUROSCI.0025-25.2025.

  112. Larsen B, Cui Z, Adebimpe A, Pines A, Alexander-Bloch A, Bertolero M, et al. A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. Sci Adv. 2022;8:eabj8750.

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Perica MI, Calabro FJ, Larsen B, Foran W, Yushmanov VE, Hetherington H, et al. Development of frontal GABA and glutamate supports excitation/inhibition balance from adolescence into adulthood. Prog Neurobiol. 2022;219:102370.

    PubMed  CAS  Google Scholar 

  114. Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, et al. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex. 2024;34:bhae046.

    PubMed  PubMed Central  Google Scholar 

  115. Widegren E, Frick MA, Hoppe JM, Weis J, Möller S, Fällmar D, et al. The influence of anterior cingulate GABA+ and glutamate on emotion regulation and reactivity in adolescents and adults. Dev Psychobiol. 2024;66:e22492.

    PubMed  CAS  Google Scholar 

  116. Volk C, Jaramillo V, Studler M, Furrer M, O’Gorman Tuura RL, Huber R. Diurnal changes in human brain glutamate + glutamine levels in the course of development and their relationship to sleep. NeuroImage. 2019;196:269–75.

    PubMed  CAS  Google Scholar 

  117. Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, et al. In vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. Proc Natl Acad Sci. 2024;121:e2318641121.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Saberi A, Wischnewski KJ, Jung K, Lotter LD, Schaare HL, Banaschewski T, et al. Adolescent maturation of cortical excitation-inhibition ratio based on individualized biophysical network modeling. Sci Adv. 2025;11:eadr8164.

  119. McKeon SD, Perica MI, Parr AC, Calabro FJ, Foran W, Hetherington H, et al. Aperiodic EEG and 7T MRSI evidence for maturation of E/I balance supporting the development of working memory through adolescence. Dev Cogn Neurosci. 2024;66:101373.

    PubMed  PubMed Central  Google Scholar 

  120. Bero J, Humphries C, Li Y, Kumar A, Lee H, Shinn M, et al. Temporal and spatial scales of resting-state human cortical activity throughout lifespan. [Preprint] 2025 Available from:https://doi.org/10.1101/2025.03.28.645952.

  121. Calabro FJ, LeCroy D, Foran W, Sydnor VJ, Parr AC, Constantinidis C, et al. Developmental decorrelation of local cortical activity through adolescence supports high-dimensional encoding and working memory. Dev Cogn Neurosci. 2025;73:101541.

    PubMed  PubMed Central  Google Scholar 

  122. Lopez-Larson MP, Anderson JS, Ferguson MA, Yurgelun-Todd D. Local brain connectivity and associations with gender and age. Dev Cogn Neurosci. 2010;1:187–97.

    PubMed Central  Google Scholar 

  123. McKeon SD, Perica MI, Calabro FJ, Foran W, Hetherington H, Moon C-H, et al. Prefrontal excitation/inhibition balance supports adolescent enhancements in circuit signal-to-noise ratio. Prog Neurobiol. 2024;243:102695.

    PubMed  CAS  Google Scholar 

  124. Baum GL, Flournoy JC, Glasser MF, Harms MP, Mair P, Sanders AFP, et al. Graded variation in T1w/T2w ratio during adolescence: measurement, caveats, and implications for development of cortical myelin. J Neurosci. 2022;42:5681–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Sydnor VJ, Petrie D, McKeon SD, Famalette A, Foran W, Calabro FJ, et al. Heterochronous laminar maturation in the human prefrontal cortex. bioRxiv. [Preprint] 2025 Available from:https://doi.org/10.1101/2025.01.30.635751.

  126. Nishio M, Liu X, Mackey AP, Arcaro MJ. Myelination across cortical hierarchies and depths in humans and macaques. bioRxiv. [Preprint] 2025 Available from:https://doi.org/10.1101/2025.02.06.636851.

  127. Norbom LB, Doan NT, Alnæs D, Kaufmann T, Moberget T, Rokicki J, et al. Probing brain developmental patterns of myelination and associations with psychopathology in youths using gray/white matter contrast. Biol Psychiatry. 2019;85:389–98.

    PubMed  Google Scholar 

  128. Grydeland H, Vértes PE, Váša F, Romero-Garcia R, Whitaker K, Alexander-Bloch AF, et al. Waves of maturation and senescence in micro-structural MRI markers of human cortical myelination over the lifespan. Cereb Cortex. 2019;29:1369–81.

    PubMed  Google Scholar 

  129. Hill J, Inder T, Neil J, Dierker D, Harwell J, Essen DV. Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA. 2010;107:13135–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Mesulam MM. From sensation to cognition. Brain. 1998;121:1013–52.

    PubMed  Google Scholar 

  131. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA. 2016;113:12574–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, Martin WJ, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat Neurosci. 2018;21:1251–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Huntenburg JM, Bazin P-L, Margulies DS. Large-scale gradients in human cortical organization. Trends Cogn Sci. 2018;22:21–31.

    PubMed  Google Scholar 

  134. Hilgetag CC, Beul SF, van Albada SJ, Goulas A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw Neurosci. 2019;3:905–23.

    PubMed  PubMed Central  Google Scholar 

  135. Xu T, Nenning K-H, Schwartz E, Hong S-J, Vogelstein JT, Goulas A, et al. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage. 2020;223:117346.

    PubMed  Google Scholar 

  136. Flechsig of Leipsic P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet. 1901;158:1027–30.

    Google Scholar 

  137. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    PubMed  CAS  Google Scholar 

  138. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci. 2004;101:8174–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Rakesh D, Lee PA, Gaikwad A, McLaughlin KA. Annual research review: associations of socioeconomic status with cognitive function, language ability, and academic achievement in youth: a systematic review of mechanisms and protective factors. J Child Psychol Psychiatry. 2025;66:417–39.

    PubMed  Google Scholar 

  140. Amso D, Salhi C, Badre D. The relationship between cognitive enrichment and cognitive control: a systematic investigation of environmental influences on development through socioeconomic status. Dev Psychobiol. 2019;61:159–78.

    PubMed  Google Scholar 

  141. Lurie LA, Hagen MP, McLaughlin KA, Sheridan MA, Meltzoff AN, Rosen ML. Mechanisms linking socioeconomic status and academic achievement in early childhood: Cognitive stimulation and language. Cogn Dev. 2021;58:101045.

    PubMed  PubMed Central  Google Scholar 

  142. Evans GW, Gonnella C, Marcynyszyn LA, Gentile L, Salpekar N. The role of chaos in poverty and children’s socioemotional adjustment. Psychol Sci. 2005;16:560–5.

    PubMed  Google Scholar 

  143. Leventhal T, Brooks-Gunn J. The neighborhoods they live in: the effects of neighborhood residence on child and adolescent outcomes. Psychol Bull. 2000;126:309–37.

    PubMed  CAS  Google Scholar 

  144. Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci. 2015;18:773–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Mackey AP, Finn AS, Leonard JA, Jacoby-Senghor DS, West MR, Gabrieli CFO, et al. Neuroanatomical correlates of the income-achievement gap. Psychol Sci. 2015;26:925–33.

    PubMed  Google Scholar 

  146. Keller AS, Moore TM, Luo A, Visoki E, Gataviņš MM, Shetty A, et al. A general exposome factor explains individual differences in functional brain network topography and cognition in youth. Dev Cogn Neurosci. 2024;66:101370.

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Leonard JA, Mackey AP, Finn AS, Gabrieli JDE. Differential effects of socioeconomic status on working and procedural memory systems. Front Hum Neurosci. 2015;9:554.

    PubMed  PubMed Central  Google Scholar 

  148. Farah MJ. The Neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron. 2017;96:56–71.

    PubMed  CAS  Google Scholar 

  149. Hanson JL, Hair N, Shen DG, Shi F, Gilmore JH, Wolfe BL, et al. Family poverty affects the rate of human infant brain growth. PLoS ONE. 2013;8:e80954.

    PubMed  PubMed Central  Google Scholar 

  150. Luby J, Belden A, Botteron K, Marrus N, Harms MP, Babb C, et al. The effects of poverty on childhood brain development: the mediating effect of caregiving and stressful life events. JAMA Pediatr. 2013;167:1135–42.

    PubMed  PubMed Central  Google Scholar 

  151. Miller JG, López V, Buthmann JL, Garcia JM, Gotlib IH. A social gradient of cortical thickness in adolescence: relationships with neighborhood socioeconomic disadvantage, family socioeconomic status, and depressive symptoms. Biol Psychiatry Glob Open Sci. 2022;2:253–62.

    PubMed  PubMed Central  Google Scholar 

  152. Norbom LB, Hanson J, van der Meer D, Ferschmann L, Røysamb E, von Soest T, et al. Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents. Dev Cogn Neurosci. 2022;56:101132.

    PubMed  PubMed Central  Google Scholar 

  153. Hyde LW, Gard AM, Tomlinson RC, Suarez GL, Westerman HB. Parents, neighborhoods, and the developing brain. Child Dev Perspect. 2022;16:148–56.

    Google Scholar 

  154. Rakesh D, Zalesky A, Whittle S. Assessment of parent income and education, neighborhood disadvantage, and child brain structure. JAMA Netw Open. 2022;5:e2226208.

    PubMed  PubMed Central  Google Scholar 

  155. Hackman DA, Cserbik D, Chen J-C, Berhane K, Minaravesh B, McConnell R, et al. Association of local variation in neighborhood disadvantage in metropolitan areas with youth neurocognition and brain structure. JAMA Pediatr. 2021;175:e210426.

    PubMed  PubMed Central  Google Scholar 

  156. Tooley UA, Bassett DS, Mackey AP. Environmental influences on the pace of brain development. Nat Rev Neurosci. 2021;22:372–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Zhao S, Su H, Cong J, Wen X, Yang H, Chen P, et al. Hierarchical individual variation and socioeconomic impact on personalized functional network topography in children. BMC Med. 2024;22:556.

    PubMed  PubMed Central  Google Scholar 

  158. Michael C, Taxali A, Angstadt M, Kardan O, Weigard A, Molloy MF, et al. Socioeconomic resources in youth are linked to divergent patterns of network integration/segregation across the brain’s transmodal axis. PNAS Nexus. 2024;3:pgae412.

    PubMed  PubMed Central  Google Scholar 

  159. Tooley UA, Latham A, Kenley JK, Alexopoulos D, Smyser TA, Nielsen AN, et al. Prenatal environment is associated with the pace of cortical network development over the first three years of life. Nat Commun. 2024;15:7932.

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Sharma A, Dorman MF, Spahr AJ. A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hearing. 2002;23:532.

    PubMed  Google Scholar 

  161. Harrison RV, Gordon KA, Mount RJ. Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Dev Psychobiol. 2005;46:252–61.

    PubMed  Google Scholar 

  162. Sharma A, Campbell J. A sensitive period for cochlear implantation in deaf children. J Matern-Fetal Neonatal Med. 2011;24:151.

    PubMed  PubMed Central  Google Scholar 

  163. McConkey Robbins A, Koch DB, Osberger MJ, Zimmerman-Phillips S, Kishon-Rabin L. Effect of age at cochlear implantation on auditory skill development in infants and toddlers. Arch Otolaryngol–Head Neck Surg. 2004;130:570–4.

    PubMed  Google Scholar 

  164. Holmes JM, Lazar EL, Melia BM, Astle WF, Dagi LR, Donahue SP, et al. Effect of age on response to amblyopia treatment in children. Arch Ophthalmol. 2011;129:1451–7.

    PubMed  PubMed Central  Google Scholar 

  165. Fronius M, Cirina L, Ackermann H, Kohnen T, Diehl CM. Efficiency of electronically monitored amblyopia treatment between 5 and 16years of age: new insight into declining susceptibility of the visual system. Vision Res. 2014;103:11–19.

    PubMed  Google Scholar 

  166. Papageorgiou E, Asproudis I, Maconachie G, Tsironi EE, Gottlob I. The treatment of amblyopia: current practice and emerging trends. Graefes Arch Clin Exp Ophthalmol. 2019;257:1061–78.

    PubMed  Google Scholar 

  167. Holmes JM, Levi DM. Treatment of amblyopia as a function of age. Visual Neurosci. 2018;35:E015.

    Google Scholar 

  168. Lewis TL, Maurer D. Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev Psychobiol. 2005;46:163–83.

    PubMed  Google Scholar 

  169. Mayberry RI. First-language acquisition after childhood differs from second-language acquisition: the case of American Sign Language. J Speech Hearing Res. 1993;36:1258–70.

    PubMed  CAS  Google Scholar 

  170. Mayberry RI, Lock E. Age constraints on first versus second language acquisition: evidence for linguistic plasticity and epigenesis. Brain Lang. 2003;87:369–84.

    PubMed  Google Scholar 

  171. Friedmann N, Rusou D. Critical period for first language: the crucial role of language input during the first year of life. Curr Opin Neurobiol. 2015;35:27–34.

    PubMed  CAS  Google Scholar 

  172. Cepeda NJ, Kramer AF, Gonzalez de Sather JC. Changes in executive control across the life span: examination of task-switching performance. Dev Psychol. 2001;37:715–30.

    PubMed  CAS  Google Scholar 

  173. Karbach J, Könen T, Spengler M. Who benefits the most? individual differences in the transfer of executive control training across the lifespan. J Cogn Enhanc. 2017;1:394–405.

    Google Scholar 

  174. Karbach J, Kray J. How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev Sci. 2009;12:978–90.

    PubMed  Google Scholar 

  175. Delalande L, Moyon M, Tissier C, Dorriere V, Guillois B, Mevell K, et al. Complex and subtle structural changes in prefrontal cortex induced by inhibitory control training from childhood to adolescence. Dev Sci. 2020;23:e12898.

    PubMed  Google Scholar 

  176. Parr AC, Sydnor VJ, Calabro FJ, Luna B. Adolescent-to-adult gains in cognitive flexibility are adaptively supported by reward sensitivity, exploration, and neural variability. Curr Opin Behav Sci. 2024;58:101399.

    PubMed  PubMed Central  Google Scholar 

  177. Lloyd A, McKay R, Sebastian CL, Balsters JH. Are adolescents more optimal decision-makers in novel environments? Examining the benefits of heightened exploration in a patch foraging paradigm. Dev Sci. 2021;24:e13075.

    PubMed  Google Scholar 

  178. Chierchia G, Soukupová M, Kilford EJ, Griffin C, Leung J, Palminteri S, et al. Confirmatory reinforcement learning changes with age during adolescence. Dev Sci. 2023;26:e13330.

    PubMed  Google Scholar 

  179. Eckstein MK, Master SL, Dahl RE, Wilbrecht L, Collins AGE. Reinforcement learning and Bayesian inference provide complementary models for the unique advantage of adolescents in stochastic reversal. Dev Cogn Neurosci. 2022;55:101106.

    PubMed  PubMed Central  Google Scholar 

  180. van der Schaaf ME, Warmerdam E, Crone EA, Cools R. Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: Relevance for dopamine’s role in adolescent decision making. Dev Cogn Neurosci. 2011;1:578–90.

    PubMed  PubMed Central  Google Scholar 

  181. Davidow JY, Foerde K, Galván A, Shohamy D. An upside to reward sensitivity: the hippocampus supports enhanced reinforcement learning in adolescence. Neuron. 2016;92:93–99.

    PubMed  CAS  Google Scholar 

  182. Teding van Berkhout E, Malouff JM. The efficacy of empathy training: A meta-analysis of randomized controlled trials. J Counsel Psychol. 2016;63:32–41.

    Google Scholar 

  183. Wang X-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci. 2020;21:169–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Michael C, Gard AM, Tillem S, Hardi FA, Dunn EC, Smith ADAC, et al. Developmental timing of associations among parenting, brain architecture, and mental health. JAMA Pediatr. 2024;178:1326–36.

    PubMed  PubMed Central  Google Scholar 

  185. Tan X, Shiyko MP, Li R, Li Y, Dierker L. A time-varying effect model for intensive longitudinal data. Psychol Methods. 2012;17:61–77.

    PubMed  Google Scholar 

  186. Stallworthy I, DeJoseph M, Padrutt E, Greifer N, Berry D. Investigating causal questions in human development using marginal structural models: a tutorial introduction to the devMSMs Package in R. 2024.

  187. Hawes SW, Littlefield AK, Lopez DA, Sher KJ, Thompson EL, Gonzalez R, et al. Longitudinal analysis of the ABCD® study. Dev Cogn Neurosci. 2025;72:101518.

    PubMed  PubMed Central  Google Scholar 

  188. Smith BJ, Smith ADAC, Dunn EC. Statistical modeling of sensitive period effects using the structured life course modeling approach (SLCMA). Curr Top Behav Neurosci. 2022;53:215–34.

    PubMed  Google Scholar 

  189. Ramphal B, Pagliaccio D, Dworkin JD, Herbstman J, Noble KG, Margolis AE. Timing-specific associations between income-to-needs ratio and hippocampal and amygdala volumes in middle childhood: a preliminary study. Dev Psychobiol. 2021;63:e22153.

    PubMed  PubMed Central  Google Scholar 

  190. Conley MI, Hindley I, Baskin-Sommers A, Gee DG, Casey BJ, Rosenberg MD. The importance of social factors in the association between physical activity and depression in children. Child Adolesc Psychiatry Ment Health. 2020;14:28.

    PubMed  PubMed Central  Google Scholar 

  191. Newbold DJ, Laumann TO, Hoyt CR, Hampton JM, Montez DF, Raut RV, et al. Plasticity and spontaneous activity pulses in disused human brain circuits. Neuron. 2020;107:580–89.e6.

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Siu T-SC, Ho S-HC. Investigating effects of bilingualism on syntactic processing: testing structural sensitivity theory. Language Learn. 2022;72:534–75.

    Google Scholar 

  193. Saragosa-Harris NM, Cohen AO, Reneau TR, Villano WJ, Heller AS, Hartley CA. Real-world exploration increases across adolescence and relates to affect, risk taking, and social connectivity. Psychol Sci. 2022;33:1664–79.

    PubMed  Google Scholar 

  194. Scott RM, Nguyentran G, Sullivan JZ. The COVID-19 pandemic and social cognitive outcomes in early childhood. Sci Rep. 2024;14:28939.

  195. Shanmugan S, Wolf DH, Calkins ME, Moore TM, Ruparel K, Hopson RD, et al. Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth. Am J Psychiatry. 2016;173:517–26.

    PubMed  PubMed Central  Google Scholar 

  196. Halse M, Steinsbekk S, Hammar Å, Wichstrøm L. Longitudinal relations between impaired executive function and symptoms of psychiatric disorders in childhood. J Child Psychol Psychiatry. 2022;63:1574–82.

    PubMed  PubMed Central  Google Scholar 

  197. Romer AL, Pizzagalli DA. Is executive dysfunction a risk marker or consequence of psychopathology? A test of executive function as a prospective predictor and outcome of general psychopathology in the adolescent brain cognitive development study®. Dev Cogn Neurosci. 2021;51:100994.

    PubMed  PubMed Central  Google Scholar 

  198. Grant JE, Chamberlain SR. Impaired cognitive flexibility across psychiatric disorders. CNS Spectr. 2023;28:688–92.

    PubMed  Google Scholar 

  199. Heinz A, Schlagenhauf F, Beck A, Wackerhagen C. Dimensional psychiatry: mental disorders as dysfunctions of basic learning mechanisms. J Neural Transm. 2016;123:809–21.

    PubMed  CAS  Google Scholar 

  200. Forbes EE, Dahl RE. Altered reward function in adolescent depression: what, when, and how?. J Child Psychol Psychiatry. 2012;53:3–15.

    PubMed  Google Scholar 

  201. Letkiewicz AM, Cochran AL, Mittal VA, Walther S, Shankman SA. Reward-based reinforcement learning is altered among individuals with a history of major depressive disorder and psychomotor retardation symptoms. J Psychiatr Res. 2022;152:175–81.

    PubMed  PubMed Central  Google Scholar 

  202. Luther L, Raugh IM, Strauss GP. Probabalistic reinforcement learning impairments predict negative symptom severity and risk for conversion in youth at clinical high-risk for psychosis. Psychol Med. 2025;55:e28.

    PubMed  PubMed Central  Google Scholar 

  203. Tsomokos DI, Flouri E. The role of social cognition in mental health trajectories from childhood to adolescence. Eur Child Adolesc Psychiatry. 2024;33:771–86.

    PubMed  Google Scholar 

  204. Derntl B, Habel U. Deficits in social cognition: a marker for psychiatric disorders?. Eur Arch Psychiatry Clin Neurosci. 2011;261:145.

    Google Scholar 

  205. Sloover M, van Est LAC, Janssen PGJ, Hilbink M, van Ee E. A meta-analysis of mentalizing in anxiety disorders, obsessive-compulsive and related disorders, and trauma and stressor related disorders. J Anxiety Disord. 2022;92:102641.

    PubMed  Google Scholar 

  206. Oberle E, Ji XR, Guhn M, Schonert-Reichl KA, Gadermann AM. Benefits of extracurricular participation in early adolescence: associations with peer belonging and mental health. J Youth Adolesc. 2019;48:2255–70.

    PubMed  Google Scholar 

  207. Yu J, Patel RA, Gilman SE. Childhood disadvantage, neurocognitive development and neuropsychiatric disorders: Evidence of mechanisms. Curr Opin Psychiatry. 2021;34:306.

    PubMed  PubMed Central  Google Scholar 

  208. Erickson J, El-Gabalawy R, Palitsky D, Patten S, Mackenzie CS, Stein MB, et al. Educational attainment as a protective factor for psychiatric disorders: findings from a nationally representative longitudinal study. Depress Anxiety. 2016;33:1013–22.

    PubMed  Google Scholar 

  209. Heller AS, Shi TC, Ezie CEC, Reneau TR, Baez LM, Gibbons CJ, et al. Association between real-world experiential diversity and positive affect relates to hippocampal-striatal functional connectivity. Nat Neurosci. 2020;23:800–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  210. Davis EP, Glynn LM. Annual research review: The power of predictability – patterns of signals in early life shape neurodevelopment and mental health trajectories. J Child Psychol Psychiatry. 2024;65:508–34.

    PubMed  PubMed Central  Google Scholar 

  211. Glynn LM, Stern HS, Howland MA, Risbrough VB, Baker DG, Nievergelt CM, et al. Measuring novel antecedents of mental illness: the Questionnaire of Unpredictability in Childhood. Neuropsychopharmacology. 2019;44:876–82.

    PubMed  Google Scholar 

  212. van Harmelen A-L, Kievit RA, Ioannidis K, Neufeld S, Jones PB, Bullmore E, et al. Adolescent friendships predict later resilient functioning across psychosocial domains in a healthy community cohort. Psychol Med. 2017;47:2312–22.

    PubMed  PubMed Central  Google Scholar 

  213. Allen K-A, Greenwood CJ, Berger E, Patlamazoglou L, Reupert A, Wurf G, et al. Adolescent school belonging and mental health outcomes in young adulthood: findings from a multi-wave prospective cohort study. School Ment Health. 2024;16:149–60.

    Google Scholar 

  214. Shochet IM, Dadds MR, Ham D, Montague R. School connectedness is an underemphasized parameter in adolescent mental health: results of a community prediction study. J Clin Child Adolesc Psychol. 2006;35:170–9.

    PubMed  Google Scholar 

  215. Modabbernia A, Janiri D, Doucet GE, Reichenberg A, Frangou S. Multivariate patterns of brain-behavior-environment associations in the adolescent brain and cognitive development study. Biol Psychiatry. 2021;89:510–20.

    PubMed  Google Scholar 

  216. Reiss F. Socioeconomic inequalities and mental health problems in children and adolescents: a systematic review. Soc Sci Med. 2013;90:24–31.

    PubMed  Google Scholar 

  217. Caspi A, Houts RM, Ambler A, Danese A, Elliott ML, Hariri A, et al. Longitudinal assessment of mental health disorders and comorbidities across 4 decades among participants in the Dunedin Birth Cohort Study. JAMA Netw Open. 2020;3:e203221.

    PubMed  PubMed Central  Google Scholar 

  218. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    PubMed  Google Scholar 

  219. Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2022;27:281–95.

    PubMed  CAS  Google Scholar 

  220. Li F, Zheng X, Wang H, Meng L, Chen M, Hui Y, et al. Mediodorsal thalamus projection to medial prefrontal cortical mediates social defeat stress-induced depression-like behaviors. Neuropsychopharmacology. 2024;49:1318–29.

    PubMed  PubMed Central  Google Scholar 

  221. Miller OH, Bruns A, Ben Ammar I, Mueggler T, Hall BJ. Synaptic Regulation of a thalamocortical circuit controls depression-related behavior. Cell Rep. 2017;20:1867–80.

    PubMed  CAS  Google Scholar 

  222. Benoit LJ, Canetta S, Kellendonk C. Thalamocortical development: a neurodevelopmental framework for schizophrenia. Biol Psychiatry. 2022;92:491–500.

    PubMed  PubMed Central  Google Scholar 

  223. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67.

    PubMed  CAS  Google Scholar 

  224. Kaar SJ, Angelescu I, Marques TR, Howes OD. Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies. J Neural Transm. 2019;126:1637–51.

    PubMed  CAS  Google Scholar 

  225. Mulvey AG, Gabhart KM, Grent-’t-Jong T, Herculano-Houzel S, Uhlhaas PJ, Bastos AM. Cell density and mRNA expression of inhibitory interneurons in schizophrenia: a meta-analysis. [Preprint] 2025 Available from:https://doi.org/10.1101/2025.05.23.655812.

  226. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell. 2019;178:1387–402.e14.

    PubMed  CAS  Google Scholar 

  227. Do KQ, Cuenod M, Hensch TK. Targeting oxidative stress and aberrant critical period plasticity in the developmental trajectory to schizophrenia. Schizophr Bull. 2015;41:835–46.

    PubMed  PubMed Central  Google Scholar 

  228. Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci. 2019;13:87.

    PubMed  PubMed Central  Google Scholar 

  229. Lake EMR, Steffler EA, Rowley CD, Sehmbi M, Minuzzi L, Frey BN, et al. Altered intracortical myelin staining in the dorsolateral prefrontal cortex in severe mental illness. Eur Arch Psychiatry Clin Neurosci. 2017;267:369–76.

    PubMed  Google Scholar 

  230. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, et al. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry. 2013;74:427–35.

    PubMed  PubMed Central  Google Scholar 

  231. Lisboa JRF, Costa O, Pakes GH, Colodete DAE, Gomes FV. Perineuronal net density in schizophrenia: a systematic review of postmortem brain studies. Schizophrenia Res. 2024;271:100–9.

    Google Scholar 

  232. Ziegler G, Hauser TU, Moutoussis M, Edward TB, Goodyer IM, Fonagy P, et al. Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nat Neurosci. 2019;22:992–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  233. Hettwer MD, Dorfschmidt L, Puhlmann LMC, Jacob LM, Paquola C, Bethlehem RAI, et al. Longitudinal variation in resilient psychosocial functioning is associated with ongoing cortical myelination and functional reorganization during adolescence. Nat Commun. 2024;15:6283.

    PubMed  PubMed Central  CAS  Google Scholar 

  234. Knudsen EI. Sensitive periods in the development of the brain and behavior. J Cogn Neurosci. 2004;16:1412–25.

    PubMed  Google Scholar 

  235. Fuhrmann D, Knoll LJ, Blakemore S-J. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015;19:558–66.

    PubMed  Google Scholar 

  236. Thomas MSC, Johnson MH. New advances in understanding sensitive periods in brain development. Curr Dir Psychol Sci. 2008;17:1–5.

    Google Scholar 

  237. Bruer JT. A critical and sensitive period primer. Critical thinking about critical periods, Baltimore, MD, US: Paul H. Brookes Publishing Co.; 2001. p. 3–26.

  238. Bailey DB. Are critical periods critical for early childhood education?: The role of timing in early childhood pedagogy. Early Child Res Q. 2002;17:281–94.

    Google Scholar 

  239. Mower GD. The effect of dark rearing on the time course of the critical period in cat visual cortex. Brain Res Dev Brain Res. 1991;58:151–8.

    PubMed  CAS  Google Scholar 

  240. Greifzu F, Pielecka-Fortuna J, Kalogeraki E, Krempler K, Favaro PD, Schlüter OM, et al. Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc Natl Acad Sci USA. 2014;111:1150–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  241. Baroncelli L, Sale A, Viegi A, Maya Vetencourt JF, De Pasquale R, Baldini S, et al. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol. 2010;226:100–9.

    PubMed  Google Scholar 

  242. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. Prior experience enhances plasticity in adult visual cortex. Nat Neurosci. 2006;9:127–32.

    PubMed  CAS  Google Scholar 

  243. Hooks BM, Chen C. Critical Periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron. 2007;56:312–26.

    PubMed  CAS  Google Scholar 

  244. Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron. 2003;38:977–85.

    PubMed  CAS  Google Scholar 

  245. Nardou R, Lewis EM, Rothhaas R, Xu R, Yang A, Boyden E, et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature. 2019;569:116–20.

    PubMed  CAS  Google Scholar 

  246. Bodin D, Yeates KO, Cass J Sensitive Periods. Encyclopedia of clinical neuropsychology, Springer, New York, NY; 2011. p. 2255–6.

  247. Gee DG, Cohodes EM. Caregiving influences on development: a sensitive period for biological embedding of predictability and safety cues. Curr Dir Psychol Sci. 2021;30:376–83.

    PubMed  PubMed Central  Google Scholar 

  248. Blakemore S-J, Mills KL. Is adolescence a sensitive period for sociocultural processing?. Annu Rev Psychol. 2014;65:187–207.

    PubMed  Google Scholar 

  249. Callaghan B. Nested sensitive periods: how plasticity across the microbiota-gut-brain axis interacts to affect the development of learning and memory. Curr Opin Behav Sci. 2020;36:55–62.

    PubMed  PubMed Central  Google Scholar 

  250. Cusick SE, Barks A, Georgieff MK. Nutrition and brain development. In: Andersen SL, editor. Sensitive periods of brain development and preventive interventions, Cham: Springer International Publishing; 2022. p. 131–65.

  251. Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, et al. Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. eLife. 2020;9:e55684.

    PubMed  PubMed Central  CAS  Google Scholar 

  252. Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage. 2021;230:117744.

    PubMed  Google Scholar 

  253. Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife. 2020;9:e61523.

    PubMed  PubMed Central  CAS  Google Scholar 

  254. Lee J, Hyun J-W, Lee J, Choi E-J, Shin H-G, Min K, et al. So you want to image myelin using MRI: an overview and practical guide for myelin water imaging. J Magn Reson Imaging. 2021;53:360–73.

    PubMed  Google Scholar 

  255. Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK. The amplitude and timing of the bold signal reflects the relationship between local field potential power at different frequencies. J Neurosci. 2012;32:1395–407.

    PubMed  PubMed Central  CAS  Google Scholar 

  256. Shmuel A, Leopold DA. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp. 2008;29:751–61.

    PubMed  PubMed Central  Google Scholar 

  257. Laumann TO, Snyder AZ. Brain activity is not only for thinking. Curr Opin Behav Sci. 2021;40:130–6.

    Google Scholar 

  258. Ghisleni C, Bollmann S, Poil S-S, Brandeis D, Martin E, Michels L, et al. Subcortical glutamate mediates the reduction of short-range functional connectivity with age in a developmental cohort. J Neurosci. 2015;35:8433–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  259. Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage. 2017;158:70–78.

    PubMed  Google Scholar 

  260. Gao R, van den Brink RL, Pfeffer T, Voytek B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. Elife. 2020;9:e61277.

    PubMed  PubMed Central  CAS  Google Scholar 

  261. Salvatore SV, Lambert PM, Benz A, Rensing NR, Wong M, Zorumski CF, et al. Periodic and aperiodic changes to cortical EEG in response to pharmacological manipulation. J Neurophysiol. 2024;131:529–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  262. Sherman SM. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016;19:533–41.

    PubMed  CAS  Google Scholar 

  263. Theyel BB, Llano DA, Sherman SM. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci. 2010;13:84–88.

    PubMed  CAS  Google Scholar 

  264. Tervo-Clemmens B, Karim ZA, Khan SZ, Ravindranath O, Somerville LH, Schuster RM, et al. The developmental timing but not magnitude of adolescent risk-taking propensity is consistent across social, environmental, and psychological factors. J Adolesc Health. 2024;74:613–6.

    PubMed  Google Scholar 

  265. Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sánchez-Aguilera A, Mantoan L, et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95:639–55.e10.

    PubMed  CAS  Google Scholar 

  266. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010;17:1092–103.

    PubMed  CAS  Google Scholar 

  267. Mainardi M, Landi S, Gianfranceschi L, Baldini S, De Pasquale R, Berardi N, et al. Environmental enrichment potentiates thalamocortical transmission and plasticity in the adult rat visual cortex. J Neurosci Res. 2010;88:3048–59.

    PubMed  CAS  Google Scholar 

  268. Cancedda L, Putignano E, Sale A, Viegi A, Berardi N, Maffei L. Acceleration of visual system development by environmental enrichment. J Neurosci. 2004;24:4840–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  269. Baroncelli L, Scali M, Sansevero G, Olimpico F, Manno I, Costa M, et al. Experience affects critical period plasticity in the visual cortex through an epigenetic regulation of histone post-translational modifications. J Neurosci. 2016;36:3430–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  270. Larsen B, Olafsson V, Calabro F, Laymon C, Tervo-Clemmens B, Campbell E, et al. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun. 2020;11:846.

    PubMed  PubMed Central  CAS  Google Scholar 

  271. Peterson ET, Kwon D, Luna B, Larsen B, Prouty D, De Bellis MD, et al. Distribution of brain iron accrual in adolescence: Evidence from cross-sectional and longitudinal analysis. Hum Brain Mapp. 2018;40:1480–95.

    PubMed  PubMed Central  Google Scholar 

  272. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology. 2009;252:165–72.

    PubMed  Google Scholar 

  273. Teicher MH, Andersen SL, Hostetter JC. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev Brain Res. 1995;89:167–72.

    CAS  Google Scholar 

  274. Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH. Sex differences in dopamine receptor overproduction and elimination. NeuroReport. 1997;8:1495.

    PubMed  CAS  Google Scholar 

  275. Rosenberg DR, Lewis DA. Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. J Comp Neurol. 1995;358:383–400.

    PubMed  CAS  Google Scholar 

  276. Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, et al. The emergence of gonadal hormone influences on dopaminergic function during puberty. Hormones Behav. 2010;58:122–37.

    CAS  Google Scholar 

  277. Sato SM, Schulz KM, Sisk CL, Wood RI. Adolescents and androgens, receptors and rewards. Hormones Behav. 2008;53:647–58.

    CAS  Google Scholar 

  278. Pfeifer JH, Allen NB. Puberty initiates cascading relationships between neurodevelopmental, social, and internalizing processes across adolescence. Biol Psychiatry. 2021;89:99–108.

    PubMed  Google Scholar 

  279. Harden KP, Mann FD, Grotzinger A, Patterson MW, Steinberg L, Tackett JL, et al. Developmental differences in reward sensitivity and sensation seeking in adolescence: testing sex-specific associations with gonadal hormones and pubertal development. J Pers Soc Psychol. 2018;115:161–78.

    PubMed  Google Scholar 

Download references

Funding

Funding for some authors was provided by the Staunton Farm Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Valerie J. Sydnor, Amar Ojha, and Angela Martinez performed literature reviews for material presented in the article. Valerie J. Sydnor, Bart Larsen, and Beatriz Luna conceived of the topic; Finnegan J. Calabro provided expert input. Valerie J. Sydnor wrote the original article and created the figures. All authors critically revised the article.

Corresponding authors

Correspondence to Valerie J. Sydnor or Beatriz Luna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sydnor, V.J., Ojha, A., Larsen, B. et al. Investigating hierarchical critical periods in human neurodevelopment. Neuropsychopharmacol. 51, 67–85 (2026). https://doi.org/10.1038/s41386-025-02246-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02246-5

Search

Quick links