Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From symptom-based heterogeneity to mechanism-based profiling in youth ADHD: the promise of computational psychiatry

Abstract

Mental health conditions such as attention-deficit/hyperactivity disorder (ADHD) and mood disorders show marked symptom heterogeneity, complicating diagnosis and treatment. Computational psychiatry offers a way forward by using mathematical models, such as sequential sampling models, applied to trial-by-trial behavior in well-defined neurocognitive tasks, to infer latent mechanisms underlying behavior. In ADHD, this approach has revealed consistent alterations in information integration (reduced drift rates) in attention-demanding tasks and also indicates that combinations of different model parameters (increased drift rate and longer nondecision time) distinguish the different neurocomputational mechanisms that underlie symptom dimensions. Early work in ADHD also suggests that drift rate predicts illness trajectories and provides insights into treatment response. Yet current applications remain preliminary, limited by task constraints, assumptions in model specification, and questions of reliability and generalizability of the derived parameters. Integrating mechanistic modeling with naturalistic tasks, physiological measures, and longitudinal designs may help to disentangle context-specific from generalizable processes. Ultimately, shifting from symptom descriptions to mechanistic models of belief and behavioral adaptation in dynamic environments may pave the way for next-generation assessments in ADHD, and help to support interventions that are ecologically valid, developmentally informed, and adaptive to patients’ changing needs across time and context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework and applications of sequential sampling models (SSMs) for characterizing latent decision-making processes.
Fig. 2: Potential link between childhood inattention and adult depressed mood, both characterized by longer encoding and execution times (SSM parameter: Ter) across two independent studies.

Similar content being viewed by others

References

  1. The State of Mental Health in America. Mental Health America. https://mhanational.org/issues/state-mental-health-america.

  2. American Association of Suicidology. Some facts about suicide and depression. 2009. https://www.cga.ct.gov/asaferconnecticut/tmy/0129/Some%20Facts%20About%20Suicide%20and%20Depression%20-%20Article.pdf.

  3. Antolini G, Colizzi M. Where do neurodevelopmental disorders go? Casting the eye away from childhood towards adulthood. Healthcare. 2023;11:1015.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Norbury A, Hauser TU, Fleming SM, Dolan RJ, Huys QJM. Different components of cognitive-behavioral therapy affect specific cognitive mechanisms. Sci Adv. 2024;10:eadk3222.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Katzman MA, Bilkey TS, Chokka PR, Fallu A, Klassen LJ. Adult ADHD and comorbid disorders: clinical implications of a dimensional approach. BMC Psychiatry. 2017;17:302.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liman C, Schein J, Wu A, Huang X, Thadani S, Childress A, et al. Real world analysis of treatment change and response in adults with attention-deficit/hyperactivity disorder (ADHD) alone and with concomitant psychiatric comorbidities: results from an electronic health record database study in the United States. BMC Psychiatry. 2024;24:618.

    Article  PubMed  PubMed Central  Google Scholar 

  7. The MTA Cooperative Group. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 1999;56:1073–86.

    Article  Google Scholar 

  8. Arnold LE, Arns M, Barterian J, Bergman R, Black S, Conners CK, et al. Double-blind placebo-controlled randomized clinical trial of neurofeedback for attention-deficit/hyperactivity disorder with 13-month follow-up. J Am Acad Child Adolesc Psychiatry. 2021;60:841–55.

    Article  Google Scholar 

  9. Jensen PS, Hinshaw SP, Kraemer HC, Lenora N, Newcorn JH, Abikoff HB, et al. ADHD comorbidity findings from the MTA study: comparing comorbid subgroups. J Am Acad Child Adolesc Psychiatry. 2001;40:147–58.

    Article  CAS  PubMed  Google Scholar 

  10. March JS, Swanson JM, Arnold LE, Hoza B, Conners CK, Hinshaw SP, et al. Anxiety as a predictor and outcome variable in the multimodal treatment study of children with ADHD (MTA). J Abnorm Child Psychol. 2000;28:527–41.

    Article  CAS  Google Scholar 

  11. Roley-Roberts ME, Pan X, Bergman R, Tan Y, Hendrix K, deBeus R, et al. For which children with ADHD is TBR neurofeedback effective? Comorbidity as a moderator. Appl Psychophysiol Biofeedback. 2023;48:179–88.

    Article  PubMed  Google Scholar 

  12. D'aiello B, Di Vara S, De Rossi P, Pretelli I, Vicari S, Menghini D. Moderators and other predictors of methylphenidate response in children and adolescents with ADHD. Int J Environ Res Public Health. 2022;19:1640.

    Article  CAS  PubMed  Google Scholar 

  13. Chen M-H, Pan TL, Hsu JW, Huang KL, Su TP, Li CT, et al. Attention-deficit hyperactivity disorder comorbidity and antidepressant resistance among patients with major depression: a nationwide longitudinal study. Eur Neuropsychopharmacol. 2016;26:1760–7.

    Article  CAS  Google Scholar 

  14. Ging-Jehli NR, Ratcliff R, Arnold LE. Improving neurocognitive testing using computational psychiatry—a systematic review for ADHD. Psychol Bull. 2021;147:169–231.

    Article  PubMed  Google Scholar 

  15. Frank MJ, Fossella JA. Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology. 2011;36:133–52.

    Article  PubMed  Google Scholar 

  16. Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79.

    Article  PubMed  Google Scholar 

  17. Nigg JT, Willcutt EG, Doyle AE, Sonuga-Barke EJS. Causal heterogeneity in attention-deficit/hyperactivity disorder: Do we need neuropsychologically impaired subtypes?. Biol Psychiatry. 2005;57:1224–30.

    Article  PubMed  Google Scholar 

  18. Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016;19:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bennett D, Silverstein SM, Niv Y. The two cultures of computational psychiatry. JAMA Psychiatry. 2019;76:563–4.

    Article  PubMed  Google Scholar 

  20. Monosov IE, Zimmermann J, Frank MJ, Mathis MW, Baker JT. Ethological computational psychiatry: challenges and opportunities. Curr Opin Neurobiol. 2024;86:102881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Browning M, Carter CS, Chatham C, Den Ouden H, Gillan CM, Baker JT, et al. Realizing the clinical potential of computational psychiatry: report from the Banbury Center Meeting, February 2019. Biol Psychiatry. 2020;88:e5–10.

    Article  Google Scholar 

  22. Hitchcock PF, Fried EI, Frank MJ. Computational psychiatry needs time and context. Annu Rev Psychol. 2022;73:243–70.

    Article  PubMed  Google Scholar 

  23. Ging Jehli NR. Utility of computational phenotyping for psychiatric disorders with low essentiality: empirical findings for attention-deficit/hyperactivity disorder and depressive disorders. Neuropsychopharmacology. 2023;48:30.

    Google Scholar 

  24. Forstmann BU, Ratcliff R, Wagenmakers E-J. Sequential sampling models in cognitive neuroscience: advantages, applications, and extensions. Annu Rev Psychol. 2016;67:641–66.

    Article  CAS  Google Scholar 

  25. Ratcliff R. A theory of memory retrieval. Psychol Rev. 1978;85:59–108.

    Article  Google Scholar 

  26. Wiecki TV, Poland J, Frank MJ. Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci. 2015;3:378–99.

    Article  Google Scholar 

  27. Smith PL, Ratcliff R. Psychology and neurobiology of simple decisions. Trends Neurosci. 2004;27:161–8.

    Article  CAS  Google Scholar 

  28. Forstmann BU, Wagenmakers E-J. Model-based cognitive neuroscience: a conceptual introduction. In: Forstmann BU, Wagenmakers E-J, editors. An introduction to model-based cognitive neuroscience. New York, NY: Springer; 2015. pp. 139–56. https://doi.org/10.1007/978-1-4939-2236-9_7.

  29. Ging-Jehli NR, Arnold LE, Roley-Roberts ME, deBeus R. Characterizing underlying cognitive components of ADHD presentations and co-morbid diagnoses: a diffusion decision model analysis. J Atten Disord. 2022;26:706–22.

    Article  Google Scholar 

  30. Geana A, Barch DM, Gold JM, Carter CS, MacDonald AW, Ragland JD, et al. Using computational modeling to capture schizophrenia-specific reinforcement learning differences and their implications on patient classification. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:1035–46.

    PubMed  Google Scholar 

  31. Pedersen ML, Ironside M, Amemori KI, McGrath CL, Kang MS, Graybiel AM, et al. Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder. PLOS Comput Biol. 2021;17:e1008955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ging-Jehli NR et al. Cognitive signatures of depressive and anhedonic symptoms, and affective states, using computational modeling and neurocognitive testing. Biol Psychiatry Cogn Neurosci Neuroimaging. 2024. https://doi.org/10.1016/j.bpsc.2024.02.005.

  33. Shapiro ZR, Bray B, Huang-Pollock C. Mechanism-based groups of children with ADHD are associated with distinct domains of impairment. Psychiatry Res. 2023;319:115018.

    Article  PubMed  Google Scholar 

  34. Ratcliff R, Scharre DW, McKoon G. Discriminating memory disordered patients from controls using diffusion model parameters from recognition memory. J Exp Psychol Gen. 2022;151:1377–93.

    Article  PubMed  Google Scholar 

  35. Ratcliff R, Smith PL, Brown SD, McKoon G. Diffusion decision model: current issues and history. Trends Cogn Sci. 2016;20:260–81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev. 2006;113:700–65.

    Article  PubMed  Google Scholar 

  37. Rapee RM, Schniering CA, Hudson JL. Anxiety disorders during childhood and adolescence: origins and treatment. Annu Rev Clin Psychol. 2009;5:311–41.

    Article  PubMed  Google Scholar 

  38. Pine DS, Klein RG. Anxiety disorders. In: Rutter’s child and adolescent psychiatry. John Wiley & Sons, Ltd; 2008. pp. 628–47. https://doi.org/10.1002/9781444300895.ch39.

  39. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th edition: DSM-5. Washington, DC: American Psychiatric Publishing; 2013.

  40. Epstein JN, Brinkman WB, Froehlich T, Langberg JM, Narad ME, Antonini TN, et al. Effects of stimulant medication, incentives, and event rate on reaction time variability in children with ADHD. Neuropsychopharmacology. 2011;36:1060–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Feldman JS, Huang-Pollock C. Slow drift rate predicts ADHD symptomology over and above executive dysfunction. Child Neuropsychol. 2021;27:834–55.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang-Pollock C, Ratcliff R, McKoon G, Shapiro Z, Weigard A, Galloway-Long H. Using the diffusion model to explain cognitive deficits in attention deficit hyperactivity disorder. J Abnorm Child Psychol. 2017;45:57–68.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weigard A, Huang-Pollock C. The role of speed in ADHD-related working memory deficits: a time-based resource-sharing and diffusion model account. Clin Psychol Sci. 2017;5:195–211.

    Article  PubMed  Google Scholar 

  44. Weigard A, Sripada C. Task-general efficiency of evidence accumulation as a computationally defined neurocognitive trait: implications for clinical neuroscience. Biol Psychiatry Glob Open Sci. 2021;1:5–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sripada C, Weigard A. Impaired evidence accumulation as a transdiagnostic vulnerability factor in psychopathology. Front Psychiatry. 2021;12:627179.

  46. Stine GM, Zylberberg A, Ditterich J, Shadlen MN. Differentiating between integration and non-integration strategies in perceptual decision making. eLife. 2020;9:e55365.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dietel FA, Möllmann A, Bürkner P-C, Wilhelm S, Buhlmann U. Interpretation bias across body dysmorphic, social anxiety and generalized anxiety disorder—a multilevel, diffusion model account. Cogn Ther Res. 2021;45:715–29.

    Article  Google Scholar 

  48. Zeguers MH, Snellings P, Tijms J, Weeda WD, Tamboer P, Bexkens A, et al. Specifying theories of developmental dyslexia: a diffusion model analysis of word recognition. Dev Sci. 2011;14:1340–54.

    Article  PubMed  Google Scholar 

  49. Haller SP, Stoddard J, Pagliaccio D, Bui H, MacGillivray C, Jones M, et al. Computational modeling of attentional impairments in disruptive mood dysregulation and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2021;60:637–45.

    Article  PubMed  Google Scholar 

  50. Stoddard J, Tseng WL, Kim P, Chen G, Yi J, Donahue L, et al. Association of irritability and anxiety with the neural mechanisms of implicit face emotion processing in youths with psychopathology. JAMA Psychiatry. 2017;74:95–103.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zachary C, Jones DJ. The role of irritability in the treatment of behavior disorders: a review of theory, research, and a proposed framework. Clin Child Fam Psychol Rev. 2019;22:197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manning C. Visual processing and decision-making in autism and dyslexia: insights from cross-syndrome approaches. Q J Exp Psychol. 2024;77:1937–48.

    Article  Google Scholar 

  53. Peterson BS, Trampush J, Maglione M, Bolshakova M, Rozelle M, Miles J, et al. Treatments for ADHD in children and adolescents: a systematic review. Pediatrics. 2024;153:e2024065787.

    Article  PubMed  Google Scholar 

  54. Kuntsi J, Eley TC, Taylor A, Hughes C, Asherson P, Caspi A, et al. Co-occurrence of ADHD and low IQ has genetic origins. Am J Med Genet B Neuropsychiatr Genet. 2004;124B:41–7.

    Article  CAS  PubMed  Google Scholar 

  55. Vos M, Rommelse N, Franke B, Oosterlaan J, Heslenfeld DJ, Hoekstra PJ, et al. Characterizing the heterogeneous course of inattention and hyperactivity-impulsivity from childhood to young adulthood. Eur Child Adolesc Psychiatry. 2022;31:1–11.

    Article  PubMed  Google Scholar 

  56. Arnold LE, Ganocy SJ, Mount K, Youngstrom EA, Frazier T, Fristad M, et al. Three-year latent class trajectories of attention-deficit/hyperactivity disorder (ADHD) symptoms in a clinical sample not selected for ADHD. J Am Acad Child Adolesc Psychiatry. 2014;53:745–60.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gau SS-F. Childhood trajectories of inattention symptoms predicting educational attainment in young adults. Am J Psychiatry. 2011;168:1131–3.

    Article  PubMed  Google Scholar 

  58. Murray AL, Hall HA, Speyer LG, Carter L, Mirman D, Caye A, et al. Developmental trajectories of ADHD symptoms in a large population-representative longitudinal study. Psychol Med. 2022;52:3590–6.

    Article  Google Scholar 

  59. Sibley MH, Arnold LE, Swanson JM, Hechtman LT, Kennedy TM, Owens E, et al. Variable patterns of remission from ADHD in the multimodal treatment study of ADHD. Am J Psychiatry. 2021;179:142–51. 2021.21010032.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hechtman L, Swanson JM, Sibley MH, Stehli A, Owens EB, Mitchell JT, et al. Functional adult outcomes 16 years after childhood diagnosis of attention-deficit/hyperactivity disorder: MTA results. J Am Acad Child Adolesc Psychiatry. 2016;55:945–52.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Moos RH, Cronkite RC. Symptom-based predictors of a 10-year chronic course of treated depression. J Nerv Ment Dis. 1999;187:360–8.

    Article  CAS  PubMed  Google Scholar 

  62. Gresham FM, MacMillan DL, Bocian KM, Ward SL, Forness SR. Comorbidity of hyperactivity-impulsivity-inattention and conduct problems: risk factors in social, affective, and academic domains. J Abnorm Child Psychol. 1998;26:393–406.

    Article  CAS  PubMed  Google Scholar 

  63. Wilens TE. Attention-deficit/hyperactivity disorder and the substance use disorders: the nature of the relationship, subtypes at risk, and treatment issues. Psychiatr Clin. 2004;27:283–301.

    Google Scholar 

  64. Weinberg A, Kujawa A, Riesel A. Understanding trajectories to anxiety and depression: neural responses to errors and rewards as indices of susceptibility to stressful life events. Curr Dir Psychol Sci. 2022;31:115–23.

    Article  Google Scholar 

  65. Sandford J, Turner A. Integrated visual and auditory continuous performance test manual. Richmond, VA: Brain Train; 2000.

  66. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139:81–132.

    Article  PubMed  Google Scholar 

  67. Meinzer MC, Pettit JW, Waxmonsky JG, Gnagy E, Molina BS, Pelham WE. Does childhood attention-deficit/hyperactivity disorder (ADHD) Predict levels of depressive symptoms during emerging adulthood?. J Abnorm Child Psychol. 2016;44:787–97.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shen L, Hu YX, Lv QY, Yi ZH, Gong JB, Yan C. Using hierarchical drift diffusion models to elucidate computational mechanisms of reduced reward sensitivity in adolescent major depressive disorder. BMC Psychiatry. 2024;24:933.

    Article  PubMed  Google Scholar 

  69. Lawlor VM, Webb CA, Wiecki TV, Frank MJ, Trivedi M, Pizzagalli DA, et al. Dissecting the impact of depression on decision-making. Psychol Med. 2020;50:1613–22.

    Article  PubMed  Google Scholar 

  70. Vandekerckhove J, Tuerlinckx F, Lee MD. Hierarchical diffusion models for two-choice response times. Psychol Methods. 2011;16:44–62.

    Article  PubMed  Google Scholar 

  71. Wagenmakers E-J. Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. Eur J Cogn Psychol. 2009;21:641–71.

    Article  Google Scholar 

  72. Ging-Jehli NR, Kraemer HC, Eugene Arnold L, Roley-Roberts ME, deBeus R. Cognitive markers for efficacy of neurofeedback for attention-deficit hyperactivity disorder—personalized medicine using computational psychiatry in a randomized clinical trial. J Clin Exp Neuropsychol. 2023;45:118–31.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dillon DG, Lazarov A, Dolan S, Bar-Haim Y, Pizzagalli DA, Schneier FR. Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion. 2022;22:1–18.

    Article  Google Scholar 

  74. Fosco WD, White CN, Hawk LW. Acute stimulant treatment and reinforcement increase the speed of information accumulation in children with ADHD. J Abnorm Child Psychol. 2017;45:911–20.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rosch KS, Fosco WD, Pelham WE Jr, Waxmonsky JG, Bubnik MG, Hawk LW Jr. Reinforcement and stimulant medication ameliorate deficient response inhibition in children with attention-deficit/hyperactivity disorder. J Abnorm Child Psychol. 2016;44:309–21.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Brown VM, Price R, Dombrovski AY. Anxiety as a disorder of uncertainty: implications for understanding maladaptive anxiety, anxious avoidance, and exposure therapy. Cogn Affect Behav Neurosci. 2023;23:844–68.

    Article  PubMed Central  Google Scholar 

  77. Nunez MD, Fernandez K, Srinivasan R, Vandekerckhove J. A tutorial on fitting joint models of M/EEG and behavior to understand cognition. Behav Res Methods. 2024;56:6020–50.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Turner BM, Forstmann BU, Steyvers M. Joint models of neural and behavioral data. Cham, Switzerland; Springer; 2019.

  79. Stevenson N, Innes RJ, Boag RJ, Miletić S, Isherwood S, Trutti AC, et al. Joint modelling of latent cognitive mechanisms shared across decision-making domains. Comput Brain Behav. 2024;7:1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hawkins GE, Cavanagh JF, Brown SD, Steyvers M. Cognitive models as a tool to link decision behavior with EEG signals. In: Forstmann BU, Turner BM, editors. An introduction to model-based cognitive neuroscience. Cham: Springer International Publishing; 2024. pp. 241–63. https://doi.org/10.1007/978-3-031-45271-0_10.

  81. Arnett AB, Rutter TM, Stein MA. Neural markers of methylphenidate response in children with attention deficit hyperactivity disorder. Front Behav Neurosci. 2022;16:887622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dolu N, Altınkaynak M, Güven A, Özmen S, Demirci E, İzzetoğlu M, et al. Effects of methylphenidate treatment in children with ADHD: a multimodal EEG/fNIRS approach. Psychiatry Clin Psychopharmacol. 2019;29:285–92.

    Article  CAS  Google Scholar 

  83. Rubinson M, Horowitz I, Naim-Feil J, Gothelf D, Levit-Binnun N, Moses E. Effects of methylphenidate on the ERP amplitude in youth with ADHD: a double-blind placebo-controlled cross-over EEG study. PLoS ONE. 2019;14:e0217383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schwartzmann B, Dhami P, Uher R, Lam RW, Frey BN, Milev R, et al. Developing an electroencephalography-based model for predicting response to antidepressant medication. JAMA Netw Open. 2023;6:e2336094.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jiao Y, Zhao K, Wei X, Carlisle NB, Keller CJ, Oathes DJ, et al. Deep graph learning of multimodal brain networks defines treatment-predictive signatures in major depression. Mol Psychiatry. 2025;30:3963–74.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Warren SL, Zhang Y, Duberg K, Mistry P, Cai W, Qin S, et al. Anxiety and stress alter decision-making dynamics and causal amygdala-dorsolateral prefrontal cortex circuits during emotion regulation in children. Biol Psychiatry. 2020;88:576–86.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, Sherman SJ, et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci. 2011;14:1462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18:414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Guan Q, Ma L, Chen Y, Luo Y, He H. Midfrontal theta phase underlies evidence accumulation and response thresholding in cognitive control. Cereb Cortex. 2023;33:8967–79.

    Article  PubMed  Google Scholar 

  90. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. J Physiol -Paris. 2015;109:3–15.

    Article  PubMed  Google Scholar 

  91. Cole RC, Ging-Jehli NR, Vivanco Suarez J, Greenlee JD, Wessel JR, Espinoza AI, et al. Theta-frequency subthalamic nucleus stimulation increases decision threshold. Brain Stimul. 2025;18:1021–7.

    Article  PubMed Central  Google Scholar 

  92. van Vugt MK, Beulen MA, Taatgen NA. Relation between centro-parietal positivity and diffusion model parameters in both perceptual and memory-based decision making. Brain Res. 2019;1715:1–12.

    Article  Google Scholar 

  93. Ging-Jehli NR, James FC, Minkyu A, David JS, Wael FA, Michael JF. Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty. PLOS Biol. 2025;23:e3002978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ratcliff R, Frank MJ. Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models. Neural Comput. 2012;24:1186–229.

    Article  PubMed  Google Scholar 

  95. Huys QJM, Browning M, Paulus MP, Frank MJ. Advances in the computational understanding of mental illness. Neuropsychopharmacology. 2021;46:3–19.

    Article  PubMed  Google Scholar 

  96. Collins AGE, Brown JK, Gold JM, Waltz JA, Frank MJ. Working memory contributions to reinforcement learning impairments in schizophrenia. J Neurosci. 2014;34:13747–56.

    Article  CAS  PubMed  Google Scholar 

  97. del Moral Pérez ME, Guzmán Duque AP, Fernández García LC. Game-based learning: increasing the logical-mathematical, naturalistic, and linguistic learning levels of primary school students. J N. Approaches Educ Res. 2018;7:31–39.

    Article  Google Scholar 

  98. Naul E, Liu M. Why story matters: a review of narrative in serious games. J Educ Comput Res. 2020;58:687–707.

    Article  Google Scholar 

  99. Robertson K, Schmitter-Edgecombe M. Naturalistic tasks performed in realistic environments: a review with implications for neuropsychological assessment. Clin Neuropsychol. 2017;31:16–42.

    Article  PubMed  Google Scholar 

  100. Ging-Jehli, N.R., Childers, R.K., Lu, J., Gemma, R., Zhu, R. Gearshift Fellowship: A Next-Generation Neurocomputational Game Platform to Model and Train Human-AI Adaptability. To appear in Lecture Notes in Computer Science (LNCS), Proceedings of the Joint Conference on Serious Games (JCSG 2025). (in press). Preprint availabe from: https://doi.org/10.48550/arXiv.2508.00850.

  101. Lee SH, Song MS, Oh M, Ahn W-Y. Bridging the gap between self-report and behavioral laboratory measures: a real-time driving task with inverse reinforcement learning. Psychol Sci. 2024;35:345–57.

    Article  PubMed  Google Scholar 

  102. Allen K, Brändle F, Botvinick M, Fan JE, Gershman SJ, Gopnik A, et al. Using games to understand the mind. Nat Hum Behav. 2024;8:1035–43.

    Article  PubMed  Google Scholar 

  103. Collins KM, Sucholutsky I, Bhatt U, Chandra K, Wong L, Lee M, et al. Building machines that learn and think with people. Nat Hum Behav. 2024;8:1851–63.

    Article  PubMed  Google Scholar 

  104. Keren A, Fisher O, Hamde A, Tsafrir S, Ratzon NZ. Reducing driving risk factors in adolescents with attention deficit hyperactivity disorder (ADHD): insights from EEG and eye-tracking analysis. Sensors. 2024;24:3319.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rhoads SA, Gu X, Barnby JM. Advancing computational psychiatry through a social lens. Nat Ment Health. 2024;2:1268–70.

    Article  Google Scholar 

  106. Leong V, Schilbach L. The promise of two-person neuroscience for developmental psychiatry: using interaction-based sociometrics to identify disorders of social interaction. Br J Psychiatry. 2019;215:636–8.

    Article  PubMed  Google Scholar 

  107. Ging-Jehli NR, Arnold LE, Van Zandt T. Cognitive & attentional mechanisms of cooperation: implications for incentive design and computational psychiatry. Cogn Affect Behav Neurosci. 2023;1545–1567.

  108. Maier SF, Seligman MEP. Learned helplessness at fifty: insights from neuroscience. Psychol Rev. 2016;123:349–67.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Liu Q, Feng Y, Chen W, Zhu Y, Preece DA, Gao Y, et al. Emotion regulation strategy and its relationship with emotional dysregulation in children with attention-deficit/hyperactivity disorder: behavioral and brain findings. Eur Child Adolesc Psychiatry. 2025;34:2241–52.

    Article  PubMed  Google Scholar 

  110. Bertollo AG, Puntel CF, da Silva BV, Martins M, Bagatini MD, Ignácio ZM. Neurobiological relationships between neurodevelopmental disorders and mood disorders. Brain Sci. 2025;15:307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sohail A, Zhang L. Informing the treatment of social anxiety disorder with computational and neuroimaging data. Psychoradiology. 2024;4:kkae010.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Stevens JR. The many faces of impulsivity. In: Impulsivity: How time and risk influence decision making. Cham, Switzerland: Springer International Publishing AG; 2017. pp. 1–6. https://doi.org/10.1007/978-3-319-51721-6_1.

  113. Morris L, Mansell W. A systematic review of the relationship between rigidity/flexibility and transdiagnostic cognitive and behavioral processes that maintain psychopathology. J Exp Psychopathol. 2018;9:2043808718779431.

    Article  Google Scholar 

  114. Gelner H, Bagrowska P, Jeronimus BF, Misiak B, Samochowiec J, Gawęda Ł. Psychotic-like experiences and underlying mechanisms: an integrative model of ADHD symptoms, rumination, negative affect, and trauma experience. J Clin Med. 2024;13:6727.

    Article  CAS  PubMed Central  Google Scholar 

  115. Mirea D-M, Nook E, Niv Y.Cognitive modeling of real-world behavior for understanding mental health. [Preprint]. 2025. Available from: https://doi.org/10.31234/osf.io/z6swk_v1.

  116. Karalunas SL, Nigg JT. Heterogeneity and subtyping in attention-deficit/hyperactivity disorder—considerations for emerging research using person-centered computational approaches. Biol Psychiatry. 2020;88:103–10.

    Article  PubMed  Google Scholar 

  117. Scholl J, Klein-Flügge M. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making. Behav Brain Res. 2018;355:56–75.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gibbs-Dean T, Katthagen T, Tsenkova I, Ali R, Liang X, Spencer T, et al. Belief updating in psychosis, depression and anxiety disorders: a systematic review across computational modelling approaches. Neurosci Biobehav Rev. 2023;147:105087.

    Article  PubMed  Google Scholar 

  119. Howlett JR, Paulus MP. Where perception meets belief updating: computational evidence for slower updating of visual expectations in anxious individuals. J Affect Disord. 2020;266:633–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Smith R, Kuplicki R, Feinstein J, Forthman KL, Stewart JL, Paulus MP, et al. A Bayesian computational model reveals a failure to adapt interoceptive precision estimates across depression, anxiety, eating, and substance use disorders. PLoS Comput Biol. 2020;16:e1008484.

    Article  CAS  PubMed  Google Scholar 

  121. Mulder MJ, Bos D, Weusten JM, van Belle J, van Dijk SC, Simen P, et al. Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;68:1114–9.

    Article  PubMed  Google Scholar 

  122. Ziegler S, Pedersen ML, Mowinckel AM, Biele G. Modelling ADHD: a review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning. Neurosci Biobehav Rev. 2016;71:633–56.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Sophia Vinogradov for her insightful editorial guidance, which greatly strengthened the clarity and organization of this review.

Funding

The present work was supported by the Swiss National Science Foundation Postdoc Award P500PS_214223 [to NGJ]. Dr. Pine’s work on this project was supported by NIMH-Intramural Research Program Project ZIA-MH002781. The funders had no role in study design, data collection, and analysis. This research was supported [in part] by the Intramural Research Program of the National Institutes of Health (NIH). The contributions of the NIH author(s) are considered Works of the United States Government. The findings and conclusions presented in this paper are those of the author(s) and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

NGJ conducted additional analyses, contributed to data interpretation, and drafted the initial manuscript. NGJ and DSP collaboratively developed the review’s conceptual framework, performed the literature synthesis, and co-wrote and revised the paper.

Corresponding author

Correspondence to Nadja R. Ging-Jehli.

Ethics declarations

Competing interests

NRG-J and DSP declare no potential conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ging-Jehli, N.R., Pine, D.S. From symptom-based heterogeneity to mechanism-based profiling in youth ADHD: the promise of computational psychiatry. Neuropsychopharmacol. (2025). https://doi.org/10.1038/s41386-025-02254-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-025-02254-5

Search

Quick links