Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LINC01149 variant modulates MICA expression that facilitates hepatitis B virus spontaneous recovery but increases hepatocellular carcinoma risk

Abstract

Interpreting disease-causing variants, especially in noncoding regions by genome-wide association studies (GWAS), has become one of the most challenging and demanding tasks. We hypothesized that functional lncRNAs variants in GWAS-identified loci might alter expression level of genes associated with persistent HBV infection and hepatocellular carcinoma (HCC). Integrated bioinformatics approaches were used to prioritize potentially functional variants and a two-stage case–control study (2473 HBV positive HCC patients, 2248 persistent HBV carriers and 2294 spontaneously recovered subjects) was performed to assess the roles of these variants. The rs2844512 G > C variant in LINC01149 was identified to facilitate HBV spontaneous recovery (OR = 0.84, 95% CI = 0.77–0.92) but increase the risk of HCC (OR = 1.21, 95% CI = 1.11–1.32) in combined samples. Subsequent biological assays indicated this variant created a binding site for miR-128-3p and upregulated MICA expression by serving as a miRNA sponge, which might recruit NK-cells to lyse infected cells, but release highly soluble MICA by shedding to induce NK-cells exhaustion and tumor immune evasion. These findings highlight a regulatory circuit between LINC01149 and MICA, mediating by miR-128-3p, and the important role of upregulated MICA in conferring susceptibility to persistent HBV infection and HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trepo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384:2053–63.

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen VT, Law MG, Dore GJ. Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J Viral Hepat. 2009;16:453–63.

    Article  CAS  PubMed  Google Scholar 

  3. Te HS, Jensen DM. Epidemiology of hepatitis B and C viruses: a global overview. Clin Liver Dis. 2010;14:1–21. vii.

    Article  PubMed  Google Scholar 

  4. Liang TJ, Hepatitis B. The virus and disease. Hepatology. 2009;49:S13–S21.

    Article  CAS  PubMed  Google Scholar 

  5. Hu Z, Liu Y, Zhai X, Dai J, Jin G, Wang L, et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat Genet. 2013;45:1499–503.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, Hosono N, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–8.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu M, Dai J, Wang C, Wang Y, Qin N, Ma H, et al. Fine mapping the MHC region identified four independent variants modifying susceptibility to chronic hepatitis B in Han Chinese. Hum Mol Genet. 2016;25:1225–32.

    Article  CAS  PubMed  Google Scholar 

  8. Hu L, Zhai X, Liu J, Chu M, Pan S, Jiang J, et al. Genetic variants in human leukocyte antigen/DP-DQ influence both hepatitis B virus clearance and hepatocellular carcinoma development. Hepatology. 2012;55:1426–31.

    Article  CAS  PubMed  Google Scholar 

  9. Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet. 2011;43:513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ioannidis JP, Thomas G, Daly MJ. Validating, augmenting and refining genome-wide association signals. Nat Rev Genet. 2009;10:318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang F, Lupski JR. Non-coding genetic variants in human disease. Hum Mol Genet. 2015;24:R102–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, Gerstein M. Role of non-coding sequence variants in cancer. Nat Rev Genet. 2016;17:93–108.

    Article  CAS  PubMed  Google Scholar 

  14. Huang Q. Genetic study of complex diseases in the post-GWAS era. J Genet Genomics. 2015;42:87–98.

    Article  PubMed  CAS  Google Scholar 

  15. Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–83.

    Article  CAS  PubMed  Google Scholar 

  16. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31:3429–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17.

    Article  CAS  PubMed  Google Scholar 

  18. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.

    Article  CAS  PubMed  Google Scholar 

  19. Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, et al. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46:D360–D370.

    Article  CAS  PubMed  Google Scholar 

  20. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan JY, Sirey T, Honti F, Graham B, Piovesan A, Merkenschlager M, et al. Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. Genome Res. 2015;25:655–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M, et al. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun. 2016;7:10982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang DK, Ma XP, Yu H, Cao G, Ding DL, Chen H, et al. Genetic variants in five novel loci including CFB and CD40 predispose to chronic hepatitis B. Hepatology. 2015;62:118–28.

    Article  CAS  PubMed  Google Scholar 

  25. Clifford RJ, Zhang J, Meerzaman DM, Lyu MS, Hu Y, Cultraro CM, et al. Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology. 2010;52:2034–43.

    Article  CAS  PubMed  Google Scholar 

  26. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002;419:734–8.

    Article  CAS  PubMed  Google Scholar 

  27. El-Gazzar A, Groh V, Spies T. Immunobiology and conflicting roles of the human NKG2D lymphocyte receptor and its ligands in cancer. J Immunol. 2013;191:1509–15.

    Article  CAS  PubMed  Google Scholar 

  28. Yang FQ, Liu M, Yang FP, Zhang XL, Yang B, Guo CC, et al. Matrix metallopeptidase 2 (MMP2) mediates MHC class I polypeptide-related sequence A (MICA) shedding in renal cell carcinoma. Actas Urol Esp. 2014;38:172–8.

    Article  CAS  PubMed  Google Scholar 

  29. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR. Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Investig. 2004;114:560–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koguchi Y, Hoen HM, Bambina SA, Rynning MD, Fuerstenberg RK, Curti BD, et al. Serum immunoregulatory proteins as predictors of overall survival of metastatic melanoma patients treated with ipilimumab. Cancer Res. 2015;75:5084–92.

    Article  CAS  PubMed  Google Scholar 

  31. Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, et al. MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA. 2008;105:1285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR. Soluble MICA in malignant diseases. Int J Cancer. 2006;118:684–7.

    Article  CAS  PubMed  Google Scholar 

  33. Paralkar VR, Taborda CC, Huang P, Yao Y, Kossenkov AV, Prasad R, et al. Unlinking an lncRNA from its associated cis element. Mol Cell. 2016;62:104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature. 2017;548:343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539:452–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhong R, Liu L, Zou L, Sheng W, Zhu BB, Xiang H, et al. Genetic variations in the TGF beta signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis. 2013;34:936–42.

    Article  CAS  PubMed  Google Scholar 

  37. Gong J, Tian J, Lou J, Wang X, Ke J, Li J, et al. A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with an MYC-regulated SNP rs6983267. Ann Oncol. 2018;29:632–9.

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Chang J, Tian J, Ke J, Zhu Y, Yang Y, et al. A rare variant P507L in TPP1 interrupts TPP1-TIN2 interaction, influences telomere length, and confers colorectal cancer risk in Chinese population. Cancer Epidemiol Biomark Prev. 2018;27:1029–35.

    Article  CAS  Google Scholar 

  39. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:D1001–1006.

    Article  CAS  PubMed  Google Scholar 

  40. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  41. Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, et al. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res. 2015;43:4363–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gong J, Liu W, Zhang J, Miao X, Guo AY. lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 2015;43:D181–186.

    Article  CAS  PubMed  Google Scholar 

  43. Takagi A, Horiuchi Y, Matsui M. Characterization of the flow cytometric assay for ex vivo monitoring of cytotoxicity mediated by antigen-specific cytotoxic T lymphocytes. Biochem Biophys Res Commun. 2017;492:27–32.

    Article  CAS  PubMed  Google Scholar 

  44. Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Exp Rev Vaccines. 2010;9:601–16.

    Article  CAS  Google Scholar 

  45. Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, et al. Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol. 2005;162:201–11.

    Article  PubMed  Google Scholar 

  46. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the people who help us accomplish this research. This work was supported by National Natural Science Foundation of China (NSFC-81874278, NSFC-81601839), Wuhan Innovation Development Program of Young Professionals for YW and National Program for Support of Top-notch Young Professionals for XM.

Author’s contributions

ZR, TJB: study design, data analysis and interpretation, and drafting of the manuscript. FMP, MSM, and SN: study design and blood sample acquisition. LJY, KJT, LL, CX, and WY: blood sample acquisition, and data acquisition. YY, GYJ, and ZY: DNA preparation and genotyping. CJ, GJ, LP, HK, and SGX: study design. MXP: study concept and design, data acquisition, critical revision of the manuscript for important intellectual content, study supervision and obtained funding.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Xiaoping Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Tian, J., Fu, M. et al. LINC01149 variant modulates MICA expression that facilitates hepatitis B virus spontaneous recovery but increases hepatocellular carcinoma risk. Oncogene 39, 1944–1956 (2020). https://doi.org/10.1038/s41388-019-1117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-019-1117-7

This article is cited by

Search

Quick links