Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MCU-dependent negative sorting of miR-4488 to extracellular vesicles enhances angiogenesis and promotes breast cancer metastatic colonization

Abstract

Based on Stephen Paget’s well-established theory, both cell-autonomous and non-cell-autonomous mechanisms are crucial for metastasis. Although the mitochondrial calcium uniporter (MCU) has been suggested to be involved in breast cancer (BC) progression via cell-autonomous mechanisms, whether it assists the metastasis of BC cells through non-cell-autonomous mechanisms remains unclear. This study aimed to demonstrate that the MCU regulates BC metastatic colonization via non-cell-autonomous mechanisms. The results suggested that extracellular vesicles (EVs) derived from MCU-downregulated MDA-MB-231 cells suppressed angiogenesis in the metastatic niche in a nude mouse model, thereby hindering the colonization of BC cells. Mechanistically, we revealed that the MCU negatively correlated with miR-4488 in EVs derived from BC cells. Significantly, miR-4488 was determined to suppress angiogenesis of vascular endothelial cells by directly targeting angiogenic CX3CL1. Furthermore, we identified miR-4488 as being significantly downregulated in serum EVs from patients with triple-negative BC. Hence, this study suggests that MCU-dependent negative sorting of miR-4488 to EVs enhances angiogenesis in the metastatic niche and, thus, favors the metastatic colonization of BC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MCU overexpression correlates with TNBC and the survival of patients with BC.
Fig. 2: MCU promotes metastasis and angiogenesis in breast cancer models.
Fig. 3: EVs generated by MCU-downregulated MDA-MB-231 cells suppress metastatic colonization and angiogenesis in vivo.
Fig. 4: MCU-controlled EVs regulate in vitro angiogenesis.
Fig. 5: MCU negatively correlates with endogenous miR-4488 in EVs derived from BC cells.
Fig. 6: MCU negatively correlates with exogenous miR-4488 in EVs derived from BC cells.
Fig. 7: miR-4488 suppresses angiogenesis by directly targeting CX3CL1 mRNA.
Fig. 8: miR-4488 levels were lower in serum EVs of TNBC patients.
Fig. 9: The graphical abstract of the study.

Similar content being viewed by others

References

  1. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–50.

    Article  PubMed  Google Scholar 

  2. Bielenberg DR, Zetter BR. The contribution of angiogenesis to the process of metastasis. Cancer J. 2015;21:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  4. Ribatti D, Nico B, Ruggieri S, Tamma R, Simone G, Mangia A. Angiogenesis and antiangiogenesis in triple-negative breast cancer. Transl Oncol. 2016;9:453–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med. 2006;6:145–9.

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Silva S, Peinado H. Melanosomes foster a tumour niche by activating CAFs. Nat Cell Biol. 2016;18:911–3.

    Article  CAS  PubMed  Google Scholar 

  8. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Yang P, Wang XF. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol. 2014;24:153–60.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30:668–81.

    Article  CAS  PubMed  Google Scholar 

  11. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Investig. 2016;126:1216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fan GC. Hypoxic exosomes promote angiogenesis. Blood. 2014;124:3669–70.

    Article  CAS  PubMed  Google Scholar 

  14. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer- implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617–38.

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien K, Rani S, Corcoran C, Wallace R, Hughes L, Friel AM, et al. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer. 2013;49:1845–59.

    Article  PubMed  CAS  Google Scholar 

  16. Ozawa P, Alkhilaiwi F, Cavalli IJ, Malheiros D, de Souza FRE, Cavalli LR. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat. 2018;172:713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kavanagh EL, Lindsay S, Halasz M, Gubbins LC, Weiner-Gorzel K, Guang M, et al. Protein and chemotherapy profiling of extracellular vesicles harvested from therapeutic induced senescent triple negative breast cancer cells. Oncogenesis. 2017;6:e388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476:336–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476:341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Curry MC, Peters AA, Kenny PA, Roberts-Thomson SJ, Monteith GR. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2013;434:695–700.

    Article  CAS  PubMed  Google Scholar 

  21. Tang S, Wang X, Shen Q, Yang X, Yu C, Cai C, et al. Mitochondrial Ca(2)(+) uniporter is critical for store-operated Ca(2)(+) entry-dependent breast cancer cell migration. Biochem Biophys Res Commun. 2015;458:186–93.

    Article  CAS  PubMed  Google Scholar 

  22. Tosatto A, Sommaggio R, Kummerow C, Bentham RB, Blacker TS, Berecz T, et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1alpha. EMBO Mol Med. 2016;8:569–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall DD, Wu Y, Domann FE, Spitz DR, Anderson ME. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival. PLoS ONE. 2014;9:e96866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 2016;30:243–56.

    Article  PubMed  CAS  Google Scholar 

  25. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic MM, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janas T, Janas MM, Sapon K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett. 2015;589:1391–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tosar JP, Gambaro F, Sanguinetti J, Bonilla B, Witwer KW, Cayota A. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015;43:5601–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory BM, et al. KRAS-dependent sorting of miRNA to exosomes. Elife. 2015;4:e07197.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Corrigan L, Redhai S, Leiblich A, Fan SJ, Perera SM, Patel R, et al. BMP-regulated exosomes from Drosophila male reproductive glands reprogram female behavior. J Cell Biol. 2014;206:671–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.

    Article  CAS  PubMed  Google Scholar 

  33. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36:D149–53.

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. ELife. 2015;4:e05005

    Article  PubMed Central  Google Scholar 

  35. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018;9:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  CAS  Google Scholar 

  38. Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling MicroRNA sorting. Cell Rep. 2016;17:799–808.

    Article  CAS  PubMed  Google Scholar 

  39. Takemoto-Kimura S, Suzuki K, Horigane SI, Kamijo S, Inoue M, Sakamoto M, et al. Calmodulin kinases: essential regulators in health and disease. J Neurochem. 2017;141:808–18.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86:433–44.

    Article  CAS  PubMed  Google Scholar 

  41. Matamala N, Vargas MT, Gonzalez-Campora R, Minambres R, Arias JI, Menendez P, et al. Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clin Chem. 2015;61:1098–106.

    Article  CAS  PubMed  Google Scholar 

  42. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article  CAS  PubMed  Google Scholar 

  43. Szukiewicz D, Kochanowski J, Pyzlak M, Szewczyk G, Stangret A, Mittal TK. Fractalkine (CX3CL1) and its receptor CX3CR1 may contribute to increased angiogenesis in diabetic placenta. Mediators Inflamm. 2013;2013:437576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Volin MV, Huynh N, Klosowska K, Reyes RD, Woods JM. Fractalkine-induced endothelial cell migration requires MAP kinase signaling. Pathobiology. 2010;77:7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. You JJ, Yang CH, Huang JS, Chen MS, Yang CM. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis. Invest Ophthalmol Vis Sci. 2007;48:5290–8.

    Article  PubMed  Google Scholar 

  46. Kornilov R, Puhka M, Mannerstrom B, Hiidenmaa H, Peltoniemi H, Siljander P, et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2018;7:1422674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Tiebang Kang and Prof. Hailin Tang from Sun Yat-Sen University Cancer Center for providing us BC clinical samples. We thank Dr. Sihua Qin from Clinical Laboratory, Nanfang Hospital of Southern Medical University for helping us on NTA. This work was supported by the National Natural Science Foundation of China under Grant 81671860 and 81741131; the Natural Science Foundation of Guangdong Province under Grant 2015A030310100.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of intergrity of the entire study: FZ, CQC. Experimental studies: XCZ, STL, ZXH, HHH, ZCY, and YTM. Data analysis: XCZ and STL. Manuscript preparation: XCZ and STL. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chunqing Cai or Fei Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Lu, S., He, Z. et al. MCU-dependent negative sorting of miR-4488 to extracellular vesicles enhances angiogenesis and promotes breast cancer metastatic colonization. Oncogene 39, 6975–6989 (2020). https://doi.org/10.1038/s41388-020-01514-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-020-01514-6

This article is cited by

Search

Quick links