Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pak1 maintains epidermal stem cells by regulating Langerhans cells and is required for skin carcinogenesis

Abstract

Pak1 (serine/threonine p21-activated kinases) was previously reported to have oncogenic activity in several cancers. However, its roles in the cancer microenvironment are poorly understood. We demonstrated that Pak1 expression in Langerhans cells (LCs) is essential for the maintenance of epidermal stem cells and skin tumor development. We found that PAK1 is localized in LCs by immunohistochemistry. Furthermore, the number of LCs significantly decreased in MSM/Ms Pak1 homozygous knockout mice (MSM/Ms-Pak1-/-). F1 hybrid (FVB/N×MSM/Ms) Pak1 heterozygous knockout mice (F1-Pak1+/-) had increased numbers of Th17 cells in the skin. Therefore, Pak1 knockdown cells were prepared using LC-derived XS52 cells (XS52-Pak1KD) and co-cultured with keratinocyte-derived C5N cells. As a result, XS52-Pak1KD cell supernatants promoted C5N cell proliferation. We then carried out DMBA/TPA skin carcinogenesis experiments using F1-Pak1+/- mice. Of note, F1-Pak1+/- mice exhibited stronger resistance to skin tumors than control mice. F1-Pak1+/- mice had fewer epidermal stem cells in the skin bulge. Our study suggested that Pak1 regulates the epidermal stem cell number by changing the properties of LCs and functions in skin carcinogenesis. We clarified a novel role of Pak1 in regulating LCs as a potential therapeutic target in skin immune disease and carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pak1-deficient mice exhibited a chronic skin inflammatory phenotype.
Fig. 2: Immunofluorescence microscopic analysis of PAK1 distribution in the skin.
Fig. 3: Activation of the Th17 axis in the skin of F1-Pak1+/- mice.
Fig. 4: Genetic inhibition of Pak1 in LCs resulted in an abnormal mRNA expression pattern.
Fig. 5: Pak1 increases XS52 cell motility and regulates secretomes to keratinocytes in XS52 cells.
Fig. 6: Genetic inhibition of Pak1 prevents chemically induced skin tumors.
Fig. 7: A schematic drawing of resistance to DMBA/TPA skin carcinogenesis via LCs in Pak1-deficient mice.

Similar content being viewed by others

References

  1. Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ. et al. PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 2014;74:5520–31. https://doi.org/10.1158/0008-5472.CAN-14-0735.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu G, Wang Y, Huang B, Liang J, Ding Y, Xu A, et al. A, Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene. 2012;31:1001–12. https://doi.org/10.1038/onc.2011.294

    Article  CAS  PubMed  Google Scholar 

  3. Wong LL, Lam IP, Wong TY, Lai WL, Liu HF, Yeung LL, et al. IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-κB activation. PLoS ONE. 2013;8:e68843 https://doi.org/10.1371/journal.pone.0068843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gonzalez-Villasana V, Fuentes-Mattei E, Ivan C, Dalton HJ, Rodriguez-Aguayo C, Fernandez-de Thomas RJ, et al. Rac1/Pak1/p38/MMP-2 axis regulates angiogenesis in ovarian. Cancer. 2015;21:2127–37. https://doi.org/10.1158/1078-0432.CCR-14-2279

    Article  CAS  Google Scholar 

  5. Yeo D, He H, Baldwin GS, Nikfarjam M. The role of p21-activated kinases in pancreatic cancer. Pancreas. 2015;44:363–9. https://doi.org/10.1097/MPA.0000000000000276

    Article  CAS  PubMed  Google Scholar 

  6. Guo Y, Zhang Z, Wei H, Wang J, Lv J, Zhang K, et al. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J Pathol. 2017;243:208–19. https://doi.org/10.1002/path.4940

    Article  CAS  PubMed  Google Scholar 

  7. He H, Baldwin GS. p21-activated kinases and gastrointestinal cancer. Biochim Biophys Acta. 2013;1833:33–9. https://doi.org/10.1016/j.bbamcr.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  8. Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA, et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012;72:5966–75. https://doi.org/10.1158/0008-5472.CAN-12-2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jagadeeshan S, Subramanian A, Tentu S, Beesetti S, Singhal M, Raghavan S, et al. P21-activated kinase 1 (Pak1) signaling influences therapeutic outcome in pancreatic cancer. Ann Oncol. 2016;27:1546–56. https://doi.org/10.1093/annonc/mdw184

    Article  CAS  PubMed  Google Scholar 

  10. Huynh N, Shulkes A, Baldwin G, He H. Up-regulation of stem cell markers by P21-activated kinase 1 contributes to 5-fluorouracil resistance of colorectal cancer. Cancer Biol Ther. 2016;17:813–23. https://doi.org/10.1080/15384047.2016.1195045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huynh N, Wang K, Yim M, Dumesny CJ, Sandrin MS, Baldwin GS, et al. Depletion of p21-activated kinase 1 up-regulates the immune system of APC∆14/+ mice and inhibits intestinal tumorigenesis. BMC Cancer. 2017;17:431. https://doi.org/10.1186/s12885-017-3432-0. 19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang K, Huynh N, Wang X, Baldwin G, Nikfarjam M, He H. Inhibition of p21 activated kinase enhances tumour immune response and sensitizes pancreatic cancer to gemcitabine. Int J Oncol. 2018;52:261–9. https://doi.org/10.3892/ijo.2017.4193

    Article  CAS  PubMed  Google Scholar 

  13. Guo F, Hildeman D, Tripathi P, Velu CS, Grimes HL, Zheng Y. Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis. Proc Natl Acad Sci USA. 2010;107:18505–10. https://doi.org/10.1073/pnas.1010249107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang W, Liu H, Liu W, Liu Y, Xu J. Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κB pathway. Cell Death Differ. 2015;22:287–97. https://doi.org/10.1038/cdd.2014.142

    Article  CAS  PubMed  Google Scholar 

  15. Gan J, Ke X, Jiang J, Dong H, Yao Z, Lin Y, et al. Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through downregulation of PAK1-STAT3/NF-κB signaling. Proc Natl Acad Sci USA. 2016;113:14745–50. https://doi.org/10.1073/pnas.1618582114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaplan DH. Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol. 2017;18:1068–75. https://doi.org/10.1038/ni.3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM, et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood. 2011;118:2502–10. https://doi.org/10.1182/blood-2011-03-344838

    Article  CAS  PubMed  Google Scholar 

  18. Cipolat S, Hoste E, Natsuga K, Quist SR, Watt FM. Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility. Elife. 2014;3:e01888. https://doi.org/10.7554/eLife.01888. Published 2014 May 5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kemp CJ. Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin Cancer Biol. 2005;15:460–73. https://doi.org/10.1016/j.semcancer.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  20. Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4:1350–62. https://doi.org/10.1038/nprot.2009.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh A, Singh A, Bauer SJ, Wheeler DL, Havighurst TC, Kim K, et al. Genetic deletion of TNFα inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCε transgenic mice via inhibition of cell survival signals. Carcinogenesis. 2016;37:72–80. https://doi.org/10.1093/carcin/bgv162

    Article  CAS  PubMed  Google Scholar 

  22. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis [published correction appears in Nat Med 1999 Sep;5(9):1087]. Nat Med. 1999;5:828–31. https://doi.org/10.1038/10552

    Article  CAS  PubMed  Google Scholar 

  23. Cataisson C, Salcedo R, Hakim S, Moffitt BA, Wright L, Yi M, et al. IL-1R-MyD88 signaling in keratinocyte transformation and carcinogenesis. J Exp Med. 2012;209:1689–702. https://doi.org/10.1084/jem.20101355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang L, Yi T, Zhang W, Pardoll DM, Yu H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010;70:10112–20. https://doi.org/10.1158/0008-5472.CAN-10-0775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forcales SV, Albini S, Giordani L, Malecova B, Cignolo L, Chernov A, et al. Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 2012;31:301–16. https://doi.org/10.1038/emboj.2011.391

    Article  CAS  PubMed  Google Scholar 

  26. Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, et al. Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol. 2015;45:922–31. https://doi.org/10.1002/eji.201445052

    Article  CAS  PubMed  Google Scholar 

  27. Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, et al. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–5. https://doi.org/10.1038/nature04808

    Article  CAS  PubMed  Google Scholar 

  28. Go C, Li P, Wang XJ. Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res. 1999;59:2861–8.

    CAS  PubMed  Google Scholar 

  29. Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol. 2017;9:a022277. https://doi.org/10.1101/cshperspect.a022277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001;7:1118–22. https://doi.org/10.1038/nm1001-1118

    Article  CAS  PubMed  Google Scholar 

  31. Modi BG, Neustadter J, Binda E, Lewis J, Filler RB, Roberts SJ, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335:104–8. https://doi.org/10.1126/science.1211600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis JM, Bürgler CD, Fraser JA, Liao H, Golubets K, Kucher CL, et al. Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells. J Investig Dermatol. 2015;135:1405–14. https://doi.org/10.1038/jid.2014.411

    Article  CAS  PubMed  Google Scholar 

  33. Ortner D, Tripp CH, Komenda K, Dubrac S, Zelger B, Hermann M, et al. Langerhans cells and NK cells cooperate in the inhibition of chemical skin carcinogenesis. Oncoimmunology. 2016;6:e1260215. https://doi.org/10.1080/2162402X.2016.1260215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Okumura K, Saito M, Isogai E, Miura I, Wakana S, Kominami R, et al. Congenic mapping and allele-specific alteration analysis of Stmm1 locus conferring resistance to early-stage chemically induced skin papillomas. PLoS ONE. 2014;9:e97201 https://doi.org/10.1371/journal.pone.0097201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clausen BE, Grabbe S. Multifaceted contributions of epidermal langerhans cells to cutaneous carcinogenesis. J Investig Dermatol. 2015;135:1218–20. https://doi.org/10.1038/jid.2014.520

    Article  CAS  PubMed  Google Scholar 

  36. Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol. 2011;90:560–4. https://doi.org/10.1016/j.ejcb.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  37. Jantschitsch C, Weichenthal M, Proksch E, Schwarz T, Schwarz AIL-12. and IL-23 affect photocarcinogenesis differently. J Investig Dermatol. 2012;132:1479–86. https://doi.org/10.1038/jid.2011.469

    Article  CAS  PubMed  Google Scholar 

  38. Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY, et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 2012;13:744–52. https://doi.org/10.1038/ni.2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene. 2017;605:20–31. https://doi.org/10.1016/j.gene.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  40. Kelly ML, Chernoff J. Mouse models of PAK function. Cell Logist. 2012;2:84–88. https://doi.org/10.4161/cl.21381.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allen JD, Jaffer ZM, Park SJ, Burgin S, Hofmann C, Sells MA, et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood. 2009;113:2695–705. https://doi.org/10.1182/blood-2008-06-160861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luckashenak N, Wähe A, Breit K, Brakebusch C, Brocker T. Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo. J Immunol. 2013;190:27–35. https://doi.org/10.4049/jimmunol.1201082.

    Article  CAS  PubMed  Google Scholar 

  43. García-García E, Rosales R, Rosales C. Phosphatidylinositol 3-kinase and extracellular signal-regulated kinase are recruited for Fc receptor-mediated phagocytosis during monocyte-to-macrophage differentiation. J Leukoc Biol. 2002;72:107–14.

    PubMed  Google Scholar 

  44. Tran G, Huynh TN, Paller AS. Langerhans cell histiocytosis: a neoplastic disorder driven by Ras-ERK pathway mutations. J Am Acad Dermatol. 2018;78:579–590.e4. https://doi.org/10.1016/j.jaad.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  45. Beesetti S, Surabhi RP, Rayala SK, Venkatraman G. Mechanics of PAK1-A new molecular player in the arena of skin cancer. J Cell Physiol. 2018;234:969–75. https://doi.org/10.1002/jcp.26925

    Article  CAS  PubMed  Google Scholar 

  46. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Investig Dermatol. 2009;129:1339–50. https://doi.org/10.1038/jid.2009.59

    Article  CAS  PubMed  Google Scholar 

  47. Müller G, Lübow C, Weindl G. Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells. Autophagy. 2019;1–16. https://doi.org/10.1080/15548627.2019.1686728.

  48. Wang A, Bai Y. Dendritic cells: the driver of psoriasis. J Dermatol. 2019;10.1111/1346-8138.15184. https://doi.org/10.1111/1346-8138.15184

  49. Eaton LH, Mellody KT, Pilkington SM, Dearman RJ, Kimber I, Griffiths CEM. Impaired Langerhans cell migration in psoriasis is due to an altered keratinocyte phenotype induced by interleukin-17. Br J Dermatol. 2018;178:1364–72. https://doi.org/10.1111/bjd.16172

    Article  CAS  PubMed  Google Scholar 

  50. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411–7. https://doi.org/10.1038/nbt950

    Article  CAS  PubMed  Google Scholar 

  51. Yuspa SH, Długosz AA, Cheng CK, Denning MF, Tennenbaum T, Glick AB, et al. Role of oncogenes and tumor suppressor genes in multistage carcinogenesis. J Investig Dermatol. 1994;103(5 Suppl):90S–95S.

    Article  CAS  PubMed  Google Scholar 

  52. Okumura K, Saito M, Isogai E, Aoto Y, Hachiya T, Sakakibara Y, et al. Meis1 regulates epidermal stem cells and is required for skin tumorigenesis. PLoS ONE 2014;9:e102111 https://doi.org/10.1371/journal.pone.0102111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Araki K, Takeda N, Yoshiki A, Obata Y, Nakagata N, Shiroishi T, et al. Establishment of germline-competent embryonic stem cell lines from the MSM/Ms strain. Mamm Genome. 2009;20:14–20. https://doi.org/10.1007/s00335-008-9160-7

    Article  CAS  PubMed  Google Scholar 

  54. Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci USA. 2011;108:7177–82. https://doi.org/10.1073/pnas.1103350108

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, Kissil JL. Validation of the p21-activated kinases as targets for inhibition in neurofibromatosis type 2. Cancer Res. 2008;68:7932–7. https://doi.org/10.1158/0008-5472.CAN-08-0866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zoumpourlis V, Solakidi S, Papathoma A, Papaevangeliou D. Alterations in signal transduction pathways implicated in tumour progression during multistage mouse skin carcinogenesis. Carcinogenesis. 2003;24:1159–65.

    Article  CAS  PubMed  Google Scholar 

  57. Xu S, Ariizumi K, Caceres-Dittmar G, Edelbaum D, Hashimoto K, Bergstresser PR, et al. Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J Immunol. 1995;154:2697–705.

    CAS  PubMed  Google Scholar 

  58. Jensen KB, Driskell RR, Watt FM. Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc. 2010;5:898–911. https://doi.org/10.1038/nprot.2010.39

    Article  CAS  PubMed  Google Scholar 

  59. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  60. Aoto Y, Okumura K, Hachiya T, Hase S, Wakabayashi Y, Ishikawa F, et al. Time-series analysis of tumorigenesis in a murine skin carcinogenesis model. Sci Rep. 2018;8:12994. https://doi.org/10.1038/s41598-018-31349-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Naoki Okada of Osaka university and Dr. Akira Takashima for providing XS52 and NS47 cells, and Dr. Allan Balmain of University of California, San Francisco for providing C5N cells. The authors also thank Mrs. Sakura Katori and Mrs. Akemi Hongu for their technical assistance. This study was supported by JSPS KAKENHI grant number JP19K07494. This work was supported by JSPS KAKENHI Grant Number JP15K06817 (AdAMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Wakabayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, K., Saito, M., Yoshizawa, Y. et al. Pak1 maintains epidermal stem cells by regulating Langerhans cells and is required for skin carcinogenesis. Oncogene 39, 4756–4769 (2020). https://doi.org/10.1038/s41388-020-1323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-020-1323-3

This article is cited by

Search

Quick links