Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aurora kinase blockade drives de novo addiction of cervical squamous cell carcinoma to druggable EGFR signalling

Abstract

Oncogenic signalling confers tumour-progression advantages; thus, its pharmacological blockade is the best strategy for cancer chemotherapy. However, drug resistance and heterogeneous dependency of tumour hamper their therapeutic potential, suggesting the necessity for a new ubiquitous modality based on evading drug resistance. Here, we proposed a de novo addiction to oncogenic signalling (Dead-On) concept, wherein specific blockade of target molecules forces cancer cells to develop dependency on an oncogenic signalling. In cervical squamous cell carcinoma cells, Aurora A/B dual blockade elicited rapid addiction to EGFR–Erk signalling, and its pharmacological/genetic inhibition synergistically enhanced anti-cancer activities in vitro, in vivo, and in a patient-derived organoid model. The signal activation was independent of EGFR genetic status, it was triggered by receptor accumulation on the plasma membrane via Rab11-mediated endocytic recycling machinery. These findings support our novel Dead-On concept which may lead to drug discovery as well as expand the adaptation of approved targeted drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CvSCC cells are resistance to dual inhibition of Aurora kinase A and B.
Fig. 2: PF-03814735 induces accumulation of EGFR on plasma membrane and activates its signalling.
Fig. 3: Combinatorial treatment of Aurora kinase A/B and EGFR inhibitor synergistically induces apoptosis of SCC cells.
Fig. 4: Concurrent treatment of aurora kinase and EGFR inhibitor enhances anti-tumour activity against CvSCC.
Fig. 5: Depletion of Aurora A and B phosphorylates EGFR via promotion of endocytic recycling.

Similar content being viewed by others

References

  1. Dotto GP, Rustgi AK. Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell. 2016;29:622–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin L, Lin DC. Biological significance of tumor heterogeneity in esophageal squamous cell carcinoma. Cancers. 2019;11:1–14.

    Article  CAS  Google Scholar 

  3. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37. e310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.

    Article  Google Scholar 

  8. Network CGAR. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  9. Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr., Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003;290:2149–58.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas R, Weihua Z. Rethink of EGFR in cancer with its kinase independent function on board. Front Oncol. 2019;9:800.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl J Med. 2005;353:123–32.

    Article  CAS  PubMed  Google Scholar 

  13. Mehra R, Cohen RB, Burtness BA. The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clin Adv Hematol Oncol. 2008;6:742–50.

    PubMed  PubMed Central  Google Scholar 

  14. Kersemaekers AM, Fleuren GJ, Kenter GG, Van den Broek LJ, Uljee SM, Hermans J, et al. Oncogene alterations in carcinomas of the uterine cervix: overexpression of the epidermal growth factor receptor is associated with poor prognosis. Clin Cancer Res. 1999;5:577–86.

    CAS  PubMed  Google Scholar 

  15. Lin G, Sun XJ, Han QB, Wang Z, Xu YP, Gu JL, et al. Epidermal growth factor receptor protein overexpression and gene amplification are associated with aggressive biological behaviors of esophageal squamous cell carcinoma. Oncol Lett. 2015;10:901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barsouk A, Rawla P, Hadjinicolaou AV, Aluru JS, Barsouk A. Targeted therapies and immunotherapies in the treatment of esophageal cancers. Med Sci. 2019;7:1–12.

    Google Scholar 

  17. Vora C, Gupta S. Targeted therapy in cervical cancer. ESMO Open. 2018;3:e000462.

    Article  PubMed  Google Scholar 

  18. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21.

    Article  CAS  PubMed  Google Scholar 

  19. Lim SM, Syn NL, Cho BC, Soo RA. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev. 2018;65:1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486:532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vojnic M, Kubota D, Kurzatkowski C, Offin M, Suzawa K, Benayed R, et al. Acquired BRAF rearrangements induce secondary resistance to EGFR therapy in EGFR-mutated lung cancers. J Thorac Oncol. 2019;14:802–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Giles KM, Kalinowski FC, Candy PA, Epis MR, Zhang PM, Redfern AD, et al. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther. 2013;12:2541–58.

    Article  CAS  PubMed  Google Scholar 

  23. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68:2391–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wang S, Cang S, Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol. 2016;9:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fukuoka S, Kojima T, Koga Y, Yamauchi M, Komatsu M, Komatsuzaki R, et al. Preclinical efficacy of Sym004, novel anti-EGFR antibody mixture, in esophageal squamous cell carcinoma cell lines. Oncotarget. 2017;8:11020–9.

    Article  PubMed  Google Scholar 

  27. Cortot AB, Repellin CE, Shimamura T, Capelletti M, Zejnullahu K, Ercan D, et al. Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 2013;73:834–43.

    Article  CAS  PubMed  Google Scholar 

  28. Astsaturov I, Ratushny V, Sukhanova A, Einarson MB, Bagnyukova T, Zhou Y, et al. Synthetic lethal screen of an EGFR-centered network to improve targeted therapies. Sci Signal. 2010;3:ra67.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Song HN, Jung KS, Yoo KH, Cho J, Lee JY, Lim SH, et al. Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR Inhibitor (HM61713) in non-small cell lung cancer. J Thorac Oncol. 2016;11:e45–47.

    Article  PubMed  Google Scholar 

  30. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol. 2015;33:306–12.

    Article  CAS  PubMed  Google Scholar 

  31. Crafton SM, Salani R. Beyond chemotherapy: an overview and review of targeted therapy in cervical cancer. Clin Ther. 2016;38:449–58.

    Article  CAS  PubMed  Google Scholar 

  32. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  33. Gabrielli B, Bokhari F, Ranall MV, Oo ZY, Stevenson AJ, Wang W, et al. Aurora A is critical for survival in HPV-transformed cervical cancer. Mol Cancer Ther. 2015;14:2753–61.

    Article  CAS  PubMed  Google Scholar 

  34. Jani JP, Arcari J, Bernardo V, Bhattacharya SK, Briere D, Cohen BD, et al. PF-03814735, an orally bioavailable small molecule aurora kinase inhibitor for cancer therapy. Mol Cancer Ther. 2010;9:883–94.

    Article  CAS  PubMed  Google Scholar 

  35. Schilder RJ, Sill MW, Lee YC, Mannel R. A phase II trial of erlotinib in recurrent squamous cell carcinoma of the cervix: a gynecologic oncology group study. Int J Gynecol Cancer. 2009;19:929–33.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5:a017459.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Madshus IH, Stang E. Internalization and intracellular sorting of the EGF receptor: a model for understanding the mechanisms of receptor trafficking. J Cell Sci. 2009;122:3433–9.

    Article  CAS  PubMed  Google Scholar 

  38. Arjonen A, Alanko J, Veltel S, Ivaska J. Distinct recycling of active and inactive β1 integrins. Traffic. 2012;13:610–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hehnly H, Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell. 2014;28:497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flaherty KT, Gray R, Chen A, Li S, Patton D, Hamilton SR, et al. The Molecular Analysis for Therapy Choice (NCI-MATCH) trial: lessons for genomic trial design. J Natl Cancer Inst. 2020;112:1021–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McLornan DP, List A, Mufti GJ. Applying synthetic lethality for the selective targeting of cancer. N. Engl J Med. 2014;371:1725–35.

    Article  CAS  PubMed  Google Scholar 

  42. Wong GS, Zhou J, Liu JB, Wu Z, Xu X, Li T, et al. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat Med. 2018;24:968–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elkabets M, Pazarentzos E, Juric D, Sheng Q, Pelossof RA, Brook S, et al. AXL mediates resistance to PI3Kalpha inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell. 2015;27:533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10:1–11.

    Article  Google Scholar 

  45. Lou K, Steri V, Ge AY, Hwang YC, Yogodzinski CH, Shkedi AR, et al. KRAS(G12C) inhibition produces a driver-limited state revealing collateral dependencies. Sci Signal. 2019;12:1–11.

    Article  Google Scholar 

  46. Twu NF, Yuan CC, Yen MS, Lai CR, Chao KC, Wang PH, et al. Expression of Aurora kinase A and B in normal and malignant cervical tissue: high Aurora A kinase expression in squamous cervical cancer. Eur J Obstet Gynecol Reprod Biol. 2009;142:57–63.

    Article  CAS  PubMed  Google Scholar 

  47. Hochegger H, Hegarat N, Pereira-Leal JB. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open Biol. 2013;3:120185.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carvajal RD, Tse A, Schwartz GK. Aurora kinases: new targets for cancer therapy. Clin Cancer Res. 2006;12:6869–75.

    Article  CAS  PubMed  Google Scholar 

  49. Huang XF, Luo SK, Xu J, Li J, Xu DR, Wang LH, et al. Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia. Blood. 2008;111:2854–65.

    Article  CAS  PubMed  Google Scholar 

  50. Wan XB, Long ZJ, Yan M, Xu J, Xia LP, Liu L, et al. Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis. 2008;29:1930–7.

    Article  CAS  PubMed  Google Scholar 

  51. Xia Z, Wei P, Zhang H, Ding Z, Yang L, Huang Z, et al. AURKA governs self-renewal capacity in glioma-initiating cells via stabilization/activation of beta-catenin/Wnt signaling. Mol Cancer Res. 2013;11:1101–11.

    Article  CAS  PubMed  Google Scholar 

  52. Gonzalez-Loyola A, Fernandez-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, et al. Aurora B overexpression causes Aneuploidy and p21Cip1 repression during tumor development. Mol Cell Biol. 2015;35:3566–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Melichar B, Adenis A, Lockhart AC, Bennouna J, Dees EC, Kayaleh O, et al. Safety and activity of alisertib, an investigational aurora kinase A inhibitor, in patients with breast cancer, small-cell lung cancer, non-small-cell lung cancer, head and neck squamous-cell carcinoma, and gastro-oesophageal adenocarcinoma: a five-arm phase 2 study. Lancet Oncol. 2015;16:395–405.

    Article  CAS  PubMed  Google Scholar 

  54. Lowenberg B, Muus P, Ossenkoppele G, Rousselot P, Cahn JY, Ifrah N, et al. Phase 1/2 study to assess the safety, efficacy, and pharmacokinetics of barasertib (AZD1152) in patients with advanced acute myeloid leukemia. Blood. 2011;118:6030–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest N. Drugs. 2012;30:2411–32.

    Article  CAS  Google Scholar 

  56. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah KN, Bhatt R, Rotow J, Rohrberg J, Olivas V, Wang VE, et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat Med. 2019;25:111–8.

    Article  CAS  PubMed  Google Scholar 

  58. Avraham R, Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011;12:104–17.

    Article  CAS  PubMed  Google Scholar 

  59. Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol. 2014;24:26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chung BM, Raja SM, Clubb RJ, Tu C, George M, Band V, et al. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src. BMC Cell Biol. 2009;10:84.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thalappilly S, Soubeyran P, Iovanna JL, Dusetti NJ. VAV2 regulates epidermal growth factor receptor endocytosis and degradation. Oncogene. 2010;29:2528–39.

    Article  CAS  PubMed  Google Scholar 

  62. Gao M, Patel R, Ahmad I, Fleming J, Edwards J, McCracken S, et al. SPRY2 loss enhances ErbB trafficking and PI3K/AKT signalling to drive human and mouse prostate carcinogenesis. EMBO Mol Med. 2012;4:776–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jonker CTH, Deo C, Zager PJ, Tkachuk AN, Weinstein AM, Rodriguez-Boulan E, et al. Accurate measurement of fast endocytic recycling kinetics in real time. J Cell Sci. 2020;133:1–12.

    Google Scholar 

  64. Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science. 2012;336:220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Pfizer Investigator-Initiated Research (WO195177) Program and by the National Cancer Center Research and Development Fund (28-A-11, 29-A-2). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

KN, TT, and MK planned the study, performed experiments, analysed the data, and wrote the manuscript; FC performed the experiments; KB and DA provided clinical samples; FT and HS conceived and planned the study, analysed the data, and wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Masayuki Komatsu or Hiroki Sasaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, M., Nakamura, K., Takeda, T. et al. Aurora kinase blockade drives de novo addiction of cervical squamous cell carcinoma to druggable EGFR signalling. Oncogene 41, 2326–2339 (2022). https://doi.org/10.1038/s41388-022-02256-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-022-02256-3

This article is cited by

Search

Quick links