Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting CircAURKA prevents colorectal cancer progression via enhancing CTNNB1 protein degradation

Abstract

Tumor progression of colorectal cancer (CRC) seriously affects patient prognosis. For CRC patients with advanced-stage disease, it is still necessary to continuously explore more effective targeted therapeutic drugs. Circular RNAs (circRNAs) are involved in the regulation of tumor biology. We screened circAURKA, which was significantly highly expressed in CRC by previous high-throughput RNA sequencing. In vitro experiments were performed to investigate the effect of the circRNA on the proliferation and metastasis of HCT116 and SW480 cells. In addition, we used the EdU assay, Transwell assay, nude mouse xenograft tumor model and nude mouse tail vein metastasis model to examine the effect of circAURKA on the proliferation and metastasis of CRC. Mechanistically, fluorescent in situ hybridization (FISH), RNA pull-down, RNA immunoprecipitation (RIP), protein coimmunoprecipitation (co-IP) experiments and animal models were performed to confirm the underlying mechanisms of circAURKA. CircAURKA was significantly highly expressed in CRC tissues and colorectal cells and mainly present in the cytoplasm. The circRNA promoted the proliferation and metastasis of CRC cells in vitro and in vivo. In terms of the molecular mechanism, circAURKA inhibited the degradation of the CTNNB1 protein by promoting the interaction between ACLY and the CTNNB1 protein, thereby promoting the proliferation and metastasis of CRC cells. In addition, circAURKA stability was regulated by m6A methylation modification. This study revealed that circAURKA promoted the proliferation and metastasis of CRC by inhibiting CTNNB1 protein degradation, providing a basis for the development of targeted drugs to control CRC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of circAURKA in CRC cells, tissues and serum.
Fig. 2: Structure identification and cell localization of circAURKA.
Fig. 3: CircAURKA promotes proliferation and metastasis of CRC.
Fig. 4: Transcriptome sequencing, RIP and pulldown mining of circAURKA downstream molecules.
Fig. 5: CircAURKA effect on ACLY and CTNNB1 proteins.
Fig. 6: CircAURKA promotes CRC proliferation and metastasis through CTNNB1.
Fig. 7: Effect of m6A modification on the stability of circAURKA.
Fig. 8

Similar content being viewed by others

Data availability

All the data used in the current study are available from the corresponding authors upon reasonable request.

References

  1. Collaborators GBDCC. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2019;4:913–33.

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA: Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  3. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–80.

    Article  PubMed  Google Scholar 

  4. Eng C, Hochster H. Early-onset colorectal cancer: the mystery remains. J Natl Cancer Inst. 2021;113:1608–10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.

    Article  PubMed  CAS  Google Scholar 

  6. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.

    Article  PubMed  CAS  Google Scholar 

  7. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–85.

    Article  PubMed  CAS  Google Scholar 

  8. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.

    Article  PubMed  CAS  Google Scholar 

  9. Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, et al. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer. 2021;20:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer. 2020;6:319–36.

    Article  PubMed  CAS  Google Scholar 

  11. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  PubMed  CAS  Google Scholar 

  12. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  PubMed  CAS  Google Scholar 

  13. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526.

  14. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell. 2022;185:2016–34.

    Article  PubMed  CAS  Google Scholar 

  16. Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 2021;20:158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, et al. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022;21:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer. 2022;21:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell. 2000;103:311–20.

    Article  PubMed  CAS  Google Scholar 

  20. Liu C, Wang L, Liu X, Tan Y, Tao L, Xiao Y, et al. Cytoplasmic SHMT2 drives the progression and metastasis of colorectal cancer by inhibiting β-catenin degradation. Theranostics. 2021;11:2966–86.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997;16:3797–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 1999;9:207–10.

    Article  PubMed  CAS  Google Scholar 

  23. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  PubMed  CAS  Google Scholar 

  24. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3’s phosphorylation of beta-catenin. Proc Natl Acad Sci USA. 2008;105:8032–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, et al. Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science. 2013;340:867–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–56.

    Article  PubMed  CAS  Google Scholar 

  27. Schuijers J, Mokry M, Hatzis P, Cuppen E, Clevers H. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J. 2014;33:146–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Guo Y, Guo Y, Chen C, Fan D, Wu X, Zhao L, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol Cancer. 2021;20:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Patel SG, Karlitz JJ, Yen T, Lieu CH, Boland CR. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol. 2022;7:262–74.

    Article  PubMed  CAS  Google Scholar 

  30. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  PubMed  CAS  Google Scholar 

  31. Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature. 2024;625:593–602.

    Article  PubMed  CAS  Google Scholar 

  32. Wei G, Chen X, Ruan T, Ma X, Zhu X, Wen W, et al. Human gastric cancer progression and stabilization of ATG2B through RNF5 binding facilitated by autophagy-associated CircDHX8. Cell Death Dis. 2024;15:410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen B, Scurrah CR, McKinley ET, Simmons AJ, Ramirez-Solano MA, Zhu X, et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell. 2021;184:6262–6280.e6226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gil-Raga M, Jantus-Lewintre E, Gallach S, Giner-Bosch V, Frangi-Caregnato A, Safont-Aguilera MJ, et al. Molecular subtypes in early colorectal cancer associated with clinical features and patient prognosis. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of. Natl Cancer Inst Mexico. 2018;20:1422–9.

    CAS  Google Scholar 

  35. Liao Y, Feng J, Sun W, Wu C, Li J, Jing T, et al. CIRP promotes the progression of non-small cell lung cancer through activation of Wnt/β-catenin signaling via CTNNB1. J Exp Clin Cancer Res. 2021;40:275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011;480:118–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–42.

    Article  PubMed  CAS  Google Scholar 

  39. Wang L, Li B, Yi X, Xiao X, Zheng Q, Ma L. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β-catenin pathway. Cell Prolif. 2021;54:e12981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway. CNS Neurosci Ther. 2022;28:884–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by The National Natural Science Foundation of China (82173055), Scientific Research and Innovation Team of The First Affiliated Hospital of Zhengzhou University (ZYCXTD2023017), The Provincial and Ministry Co-constructed Key Projects of Henan Medical Science and Technology (SBGJ202102134), Henan Provincial Health and Health Commission Joint Construction Project (LHGJ20200158), and Henan Province Young and Middle-aged Health Science and Technology Innovation Leading Talent Project (YXKC2022016).

Author information

Authors and Affiliations

Authors

Contributions

ZS, YL, and JH provided direction and guidance throughout the preparation of this manuscript. PD, YG, SL, YX, HS, WW, and CC performed all experiments in this study. PD, YG, SL, and SH performed the data analysis and wrote the manuscript. JL and ZJ collected the related references and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhenqiang Sun, Yang Liu or Junhong Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The authors declare that all methods were performed in accordance with all relevant guidelines and regulations. The human cancer tissues used in this study were approved by Ethnics Committee of The First Affiliated Hospital of Zhengzhou University (2019-KY-423). The Zhengzhou University Institutional Animal Care and Use Committee reviewed and approved all animal research protocols.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Dang, P., Guo, Y. et al. Targeting CircAURKA prevents colorectal cancer progression via enhancing CTNNB1 protein degradation. Oncogene 43, 3388–3401 (2024). https://doi.org/10.1038/s41388-024-03155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03155-5

Search

Quick links