Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced anti-cancer efficacy of arginine deaminase expressed by tumor-seeking Salmonella Gallinarum

Abstract

Amino acid deprivation, particularly of nonessential amino acids that can be synthesized by normal cells but not by cancer cells with specific defects in the biosynthesis pathway, has emerged as a potential strategy in cancer therapeutics. In normal cells, arginine is synthesized from citrulline in two steps via two enzymes: argininosuccinate synthetase (ASS1) and argininosuccinate lyase. Several cancer cells exhibit arginine auxotrophy due to the loss or down-regulation of ASS1. These cells undergo starvation-induced cell death in the presence of arginine-degrading enzymes such as arginine deaminase (ADI). Thus, ADI has emerged as a potential therapeutic in cancer therapy. However, the use of ADI has two major disadvantages: ADI of bacterial origin is strongly antigenic in mammals, and ADI has a short circulation half-life (5 h). In this study, we engineered tumor-targeting Salmonella Gallinarum to express and secrete ADI and deployed this strain into mice implanted with ASS1-defective mouse colorectal cancer (CT26) through an intravenous route. A notable antitumor effect was observed, suggesting that the disadvantages were overcome as ADI was expressed constitutively by tumor-targeting bacteria. A combination with chloroquine, which inhibits the induction of autophagy, further enhanced the effect.

Anti-cancer effect of Salmonella Gallinarum expressing an arginine deiminase (ADI) on arginine-dependent tumors in situ.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Engineering ADI-expressing S. Gallinarum and evaluation of its anticancer activity against different cancer cell lines in vitro.
Fig. 2: Expression and secretion of PelB-ADI by intratumoral S. Gallinarum harboring pTAC_PelB::ADI, and its antitumor efficacy in BALB/c mice bearing CT26 colon carcinoma xenografts.
Fig. 3: Effect of combination treatment of S. Gallinarum carrying different plasmids with purified ADI.
Fig. 4: Therapeutic efficacy of combination treatment with S. Gallinarum expressing PelB-ADI and CQ.

Similar content being viewed by others

Data availability

The data and code underlying the findings of this study are available from the corresponding author on reasonable request.

References

  1. Mengesha A, Dubois L, Chiu RK, Paesmans K, Wouters BG, Lambin P, et al. Potential and limitations of bacterial-mediated cancer therapy. Front Biosci. 2007;12:3880–91.

    Article  PubMed  CAS  Google Scholar 

  2. Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial therapy of cancer: promises, limitations, and insights for future directions. Front Microbiol. 2018;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kamta J, Chaar M, Ande A, Altomare DA, Ait‐Oudhia S. Advancing cancer therapy with present and emerging immuno‐oncology approaches. Front Oncol. 2017;7:64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murphy C, Rettedal E, Lehouritis P, Devoy C, Tangney M. Intratumoural production of TNFα by bacteria mediates cancer therapy. PloS one. 2017;12:e0180034.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat Rev Cancer. 2010;10:785–794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nallar SC, Xu D‐Q, Kalvakolanu DV. Bacteria and genetically modified bacteria as cancer therapeutics: current advances and challenges. Cytokine. 2017;89:160–172.

    Article  PubMed  CAS  Google Scholar 

  7. Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother. 2003;26:179–180.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10:737–44.

    Article  PubMed  CAS  Google Scholar 

  9. Thamm DH, Kurzman ID, King I, Li Z, Sznol M, Dubielzig RR, et al. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin Cancer Res. 2005;11:4827–34.

    Article  PubMed  CAS  Google Scholar 

  10. Song S, Vuai MS, Zhong M. The role of bacteria in cancer therapy–enemies in the past, but allies at present. Infect Agent Cancer. 2018;13:9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang C, Hu Q, Shen H‐M. Pharmacological inhibitors of autophagy as novel cancer therapeutic agents. Pharm Res. 2016;105:164–175.

    Article  CAS  Google Scholar 

  12. Jia LJ, Wei DP, Sun QM, Huang Y, Wu Q, Hua ZC. Oral delivery of tumor‐targeting Salmonella for cancer therapy in murine tumor models. Cancer Sci. 2007;98:1107–1112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nguyen VH, Min J‐J. Salmonella‐mediated cancer therapy: roles and potential. Nucl Med Mol Imaging. 2017;51:118–126.

    Article  PubMed  CAS  Google Scholar 

  14. Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, et al. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology. 2017;7:e1382791.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008;3:629–36.

    Article  PubMed  CAS  Google Scholar 

  16. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer. 2010;126:2762–72.

    Article  PubMed  CAS  Google Scholar 

  17. Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes Abstract: Glycolysis TCA cycle. Oncotarget. 2010;1:246–51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiong L, Teng JL, Botelho MG, Lo RC, Lau SK, Woo PC. Arginine metabolism in bacterial pathogenesis and cancer therapy. Int J Mol Sci. 2016;17:363.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Joseph SC, Blackman BA, Kelly ML, Phillips M, Beaury MW, Martinez I, et al. Synthesis, characterization, and biological activity of poly(arginine)-derived cancer-targeting peptides in HepG2 liver cancer cells. J Pept Sci. 2014;20:736–45.

    Article  PubMed  CAS  Google Scholar 

  20. Al-Koussa H, El Mais N, Maalouf H, Abi-Habib R, El-Sibai M. Arginine deprivation: a potential therapeutic for cancer cell metastasis? A review. Cancer Cell Int. 2020;20:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bakshi N, Morris CR. The role of the arginine metabolome in pain: implications for sickle cell disease. J Pain Res. 2016;9:167–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Takaku H, Takase M, Abe S, Hayashi H, Miyazaki K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer. 1992;51:244–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K, et al. Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal. 2019;13:319–30.

    Article  PubMed  CAS  Google Scholar 

  24. Holtsberg FW, Ensor CM, Steiner MR, Bomalaski JS, Clark MA. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release. 2002;80:259–71.

    Article  PubMed  CAS  Google Scholar 

  25. Zeng T, Zhang Y, Yan Q, Huang Z, Zhang L, Yi X, et al. Construction and in vitro evaluation of enzyme nanoreactors based on carboxymethyl chitosan for arginine deprivation in cancer therapy. Carbohydr Polym. 2017;162:35–41.

    Article  PubMed  CAS  Google Scholar 

  26. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kim JE, Kim SY, Lee KW, Lee HJ. Arginine deiminase originating from Lactococcus lactis ssp. lactis American Type Culture Collection (ATCC) 7962 induces G1-phase cell-cycle arrest and apoptosis in SNU-1 stomach adenocarcinoma cells. Br J Nutr. 2009;102:1469–76.

    Article  PubMed  CAS  Google Scholar 

  28. Munro S, Pelham HR. Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70. EMBO J. 1984;3:3087–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Keen NT, Tamaki S. Structure of two pectate lyase genes from Erwinia chrysanthemi EC16 and their high-level expression in Escherichia coli. J Bacteriol. 1986;168:595–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lim D, Kim K, Duysak T, So E, Jeong JH, Choy HE. Bacterial cancer therapy using the attenuated fowl-adapted Salmonella enterica serovar Gallinarum. Mol Ther Oncolytics. 2023;31:100745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cashel M, Gentry DR, Hernandez VJ, Vinella D The stringent response. In “Escherichia coli and Salmonella. Cellular and Molecular Biology” 2nd ed., eds. Neidhardt, FC, Curtiss, 1996;1458–96.

  32. Kim K, Jeong JH, Lim D, Hong Y, Yun M, Min JJ, et al. A novel balanced-lethal host-vector system based on glmS. PLoS One. 2013;8:e60511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Boyde TRC, Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem. 1980;107:424–31.

    Article  PubMed  CAS  Google Scholar 

  34. Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009;69:700–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med. 2010;10:405–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang Z, Shi X, Li Y, Fan J, Zeng X, Xian Z, et al. Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells. Cell Death Dis. 2014;5:e1563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bedoya V. Effect of chloroquine on malignant lymphoreticular and pigmented cells in vitro. Cancer Res. 1970;30:1262–75.

    PubMed  CAS  Google Scholar 

  38. Inoue S, Hasegawa K, Ito S, Wakamatsu K, Fujita K. Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin. Pigment Cell Res. 1993;6:354–8.

    Article  PubMed  CAS  Google Scholar 

  39. Chen TH, Chang PC, Chang MC, Lin YF, Lee HM. Chloroquine induces the expression of inducible nitric oxide synthase in C6 glioma cells. Pharm Res. 2005;51:329–36.

    Article  CAS  Google Scholar 

  40. Fan C, Wang W, Zhao B, Zhang S, Miao J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem. 2006;14:3218–22.

    Article  PubMed  CAS  Google Scholar 

  41. Jiang PD, Zhao YL, Shi W, Deng XQ, Xie G, Mao YQ, et al. Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol Biochem. 2008;22:431–40.

    Article  PubMed  CAS  Google Scholar 

  42. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12:401–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. White E, Mehnert JM, Chan CS. Autophagy, metabolism, and cancer. Clin Cancer Res. 2015;21:5037–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26:190–206.

    Article  PubMed  CAS  Google Scholar 

  45. Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res. 2019;9:721–34.

    Article  PubMed  CAS  Google Scholar 

  46. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol. 2024;5:109–22.

  47. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4:https://doi.org/10.1128/microbiolspec.VMBF-0012-2015.

  48. Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10:336–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lei SP, Lin HC, Wang SS, Callaway J, Wilcox G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol. 1987;169:4379–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kelly MP, Jungbluth AA, Wu BW, Bomalaski J, Old LJ, Ritter G. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer. 2012;106:324–32.

    Article  PubMed  CAS  Google Scholar 

  51. Liu J, Ma J, Wu Z, Li W, Zhang D, Han L, et al. Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-κB signaling. BMC Cancer. 2014;14:686 https://doi.org/10.1186/1471-2407-14-686.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ye PH, Li CY, Cheng HY, Anuraga G, Wang CY, Chen FW, et al. A novel combination therapy of arginine deiminase and an arginase inhibitor targeting arginine metabolism in the tumor and immune microenvironment. Am J Cancer Res. 2023;13:1952–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Huang HY, Wu WR, Wang YH, Wang JW, Fang FM, Tsai JW, et al. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res. 2013;19:2861–72. https://doi.org/10.1158/1078-0432.CCR-12-2641.

    Article  PubMed  CAS  Google Scholar 

  54. Wang H, Li QF, Chow HY, Choi SC, Leung YC. Arginine deprivation inhibits pancreatic cancer cell migration, invasion and EMT via the down regulation of Snail, Slug, Twist, and MMP1/9. J Physiol Biochem. 2020;76:73–83.

    Article  PubMed  CAS  Google Scholar 

  55. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhou J, Tan SH, Nicolas V, Bauvy C, Yang ND, Zhang J, et al. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013;23:508–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jeong JH, Song M, Park SI, Cho KO, Rhee JH, Choy HE. Salmonella enterica serovar gallinarum requires ppGpp for internalization and survival in animal cells. J Bacteriol. 2008;190:6340–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation(NRF) funded by the Korean government (MSIT) (No. NRF-2020M3A9G3080282). MY was supported by the World Institute of Kimchi (grant numbers: KE2403-1), funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HEC and H-HJ; methodology, KK; data curation, TD; writing—original draft preparation, TD; writing—review and editing, HEC and MY; funding acquisition, J-HJ. All authors have read and agreed to the published version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jae-Ho Jeong or Hyon E. Choy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Institutional Review Board Statement

The animal study protocol was approved by the Ethics Committee of Chonnam National University–Institutional Animal Use and Care Committee (CNU IACUC-H-2020-7).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duysak, T., Kim, K., Yun, M. et al. Enhanced anti-cancer efficacy of arginine deaminase expressed by tumor-seeking Salmonella Gallinarum. Oncogene 43, 3378–3387 (2024). https://doi.org/10.1038/s41388-024-03176-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03176-0

This article is cited by

Search

Quick links