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Sex-dependent differences in hematopoietic stem cell aging
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Sex influences many biological outcomes, but how sex affects hematopoietic stem cell (HSC) aging and hematological disorders is
poorly understood. The widespread use of young animal models to study age-related diseases further complicates these matters.
Using aged and long-lived BALB/c mouse models, we discovered that aging mice exhibit sex-dependent disparities, mirroring aging
humans, in developing myeloid skewing, anemia, and leukemia. These disparities are underlined by sex-differentiated HSC aging
characteristics across the population, single-cell, and molecular levels. The HSC population expanded significantly with aging and
longevity in males, but this occurred to a much lesser degree in aging females that instead expanded committed progenitors.
Aging male HSCs are more susceptible to BCR-ABL1 transformation with faster development of chronic myeloid leukemia (CML)
than female HSCs. Additionally, the loss of the aging regulator Sirt1 inhibited CML development in aging male but not female mice.
Our results showed for the first time that sex-differentiated HSC aging impacts hematopoiesis, leukemogenesis, and certain gene
functions. This discovery provides insights into understanding age-dependent hematological diseases and sex-targeted strategies
for the treatment and prevention of certain blood disorders and cancer.
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INTRODUCTION
Aging affects men and women differently. Women live longer but
paradoxically face greater frailty and health issues late in life [1].
The blood system, common to both sexes, shows sex disparities in
autoimmune diseases prevalent in women [2]. Hematological
aging in humans is characterized by skewed differentiation toward
the production of more myeloid cells and fewer lymphocytes,
particularly B cells [3, 4]. Estrogen suppresses B cell production [5],
yet post-menopausal women still produce fewer B cells. Anemia
impacts about 17% of seniors >65 years globally, affecting millions
especially those hospitalized [6, 7]. Anemia contributes to frailty,
cognitive impairment, and cardiovascular disease in the seniors
[6]. Women have a greater incidence of moderate to severe
anemia with worse clinical presentations than men [8–10].
Conversely, myeloid leukemias, both acute (AML) and chronic
(CML), occur more often in aging men [11, 12]. Female CML
patients have more favorable prognoses and molecular responses
to tyrosine kinase inhibitors (TKIs) [13, 14]. However, the
mechanisms underlying these sex-based differences in these
blood disorders are poorly understood.
Aging of HSCs is believed to be a key factor driving

hematological aging [15]. Aging HSCs exhibit increased cell
cycling, resulting in an expansion of HSCs and myeloid-biased
differentiation [16, 17]. Aging HSCs undergo transcriptome
changes, with clonal expansion of myeloid-biased cells (Refs

[18–21] and additional refs in the meta-analysis by Flohr Svendsen
et al. [22]). Sex is a historically overlooked variable in biomedical
research [23] because of the fear that female cyclic hormone
fluctuations may introduce additional variation [24]. Likewise,
sexes are often not disclosed or segregated in mouse studies of
HSC aging. Despite recent reports showing that estrogen and
pregnancy affect HSC self-renewal in young female mice [25, 26],
sex’s impact on HSC aging is unclear. This gap is compounded by
the prevalent use of young lab animals for age-related disease
studies. The impact of model organisms’ age on disease risk,
intervention and therapeutic outcome has been under-
researched, especially when sex is factored in.
The current knowledge of HSCs and their functions is mostly

gained from C57BL/6 mice [15]. However, multiple lines of
evidence suggest that BALB/c mice are a good model for
hematological aging research. Their sex-based lifespan differences
mirror human patterns, with females living longer than males [27].
This provides an advantage over C57BL/6 mice, in which males
have a longer lifespan [27]. BALB/c mice possess a hypomorphic
p16INK4a allele [28, 29], simulating human p16INK4a inactivation
during aging. Female BALB/c mice exhibit higher CD4+ and CD8+

T cell counts than males [30, 31], paralleling human immune
profiles [32, 33]. From a practical point, BALB/c mice have shorter
lifespans than C57BL/6 mice [27], facilitating more manageable
aging studies. Additionally, BALB/c mouse models of CML have
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been well established including a recent aging mouse model of
CML in 75% of lifespan that more closely mimics human CML in
the elderly with increased anemia incidence [34].
Using aging BALB/c mouse models, here we demonstrated sex-

dependent differences in the development of skewed myeloid
differentiation, hemolytic anemia, and leukemia in aging mice in a
way similar to that of aging humans. These were underlined by
the sex-dependent differences of HSC aging in which aging males
had a greater expansion of HSCs than did aging females. Single-
cell RNA-seq (scRNA-seq) revealed several common HSC aging
pathways across mouse strains and sexes, but IFNα response, sex
hormone signaling and autoimmune pathways were discerning
for male and female aging HSCs. We showed that old male BALB/c
mice developed CML significantly faster than females did, and
Sirt1 deletion inhibited CML in aging males but not females. Our
results underscore sex as a crucial factor influencing HSC aging,
leukemogenesis, and Sirt1 functions in aging HSC transformation.

RESULTS
Sex-dependent differences in hematological aging
We established an aging colony of BALB/c nonbreeder mice.
Grossly normal mice without obvious illness signs were chosen for
the study as described [34]. We examined hematological changes
in males and females from young (3 months), aged/aging
(18 months, 75% median lifespan), to long-lived (28 months,
>110% median lifespan) mice. We found that aging in males was
associated with increased white blood cell (WBC) counts, which
were associated with increased neutrophil (NE) counts until
28 months, when some males lost lymphocyte (LY) counts
substantially. In contrast, females exhibited reduced WBCs with
age due to progressive lymphocyte loss. (Fig. 1a). Percentagewise,
females had more persistent LY decrease and NE increase with
age (Fig. 1b). Flow cytometry confirmed greater T (CD3e+) and B
(B220+) cell decline in females, with male B cells dropping
significantly only in late life (Fig. 1c). Skewed myeloid differentia-
tion was observed in both sexes by 28 months but occurred earlier
in females. Our findings are reminiscent of early reports that men’s
WBCs increase with more myeloid cells toward aging, while
women’s decrease with significant lymphocyte loss [35, 36].
BALB/c mice developed mild anemia at 18 months, worsening

by 28 months, as indicated by reduced hemoglobin levels, red
blood cell counts and hematocrit levels (Fig. 1d). Female mice at
28 months exhibited more severe anemia, with lower hemoglobin
and higher reticulocyte percentage than males (Fig. 1d). Anemia
with reticulocytosis suggests hemolytic anemia from autoimmune
destruction of red blood cells [6]. The sex differences in the BALB/c
anemia phenotypes mirror human trends, where moderate to
severe anemia is more prevalent in females, particularly older
women with pronounced clinical symptoms [8–10].
When the above data were re-plotted by comparing male and

female blood cells at each time point, overall differences for blood
cell counts were less pronounced between the two sexes, but
declining B cells, anemia and increasing monocytes were more
consistently observed in aged females (Supplementary Fig. 1). Yet
this comparison obscured certain age-related changes unique to
each sex and it will be further discussed below in molecular
analysis.

Sex-dependent differences in hematological aging were
hematological cell autonomous
We examined whether sex-dependent differences in hematologi-
cal aging were intrinsic to hematological cells. We first performed
total bone marrow transplantation (BMT) of 28-month-old mouse
donors to 3-month-old recipients of the same sex. Healthy long-
lived mouse bone marrow (BM) samples from both sexes with
comparable profiles (Supplementary Fig. 2a) were used. As shown
in Fig. 2a–c, old female-to-young female (OF-YF) BMT recipients

exhibited greater myeloid skewing and anemia than did old male-
to-young male (OM-YM) BMT recipients, similar to that in 28-
month-old mice. All female recipients succumbed to anemia or
acute myeloid leukemia (AML) within 8 months post-transplant;
male recipients, however, remained healthy (Fig. 2d, e and
Supplementary Fig. 2b, c).
Because of the difficulty in confirming donor cells in the same-

sex BMT, we carried out cross-sex BMT with long-lived mouse
donor cells (Supplementary Fig. 3a). Both old male-to-young
female (OM-YF) and old female-to-young male (OF-YM) BMTs were
confirmed by SRY genotyping of recipient WBCs (Supplementary
Fig. 3b). Interestingly, in OF-YM BMTs, female Xist gene expression
was significantly suppressed in all recipients (Supplementary
Fig. 3c). We found that OF-YM BMT mice developed predominantly
B/myeloid mixed phenotype acute leukemia (B/M MPAL), a
leukemia of hematopoietic stem/progenitor cell (HSPC) origin
[37], which was defined morphologically and phenotypically by
≥20% blasts in peripheral blood or bone marrow that were
positive biphenotypically for both B (B220+) and myeloid lineage
(Mac1/Gr1+) markers (Fig. 2f, g and Supplementary Fig. 3d), as
described previously [38]. As a result, OF-YM BMT mice died
quickly, while OM-YF BMT mice were healthy (Fig. 2h). B/M MPAL
developed in OF-YM BMT mice with a cumulative BM age similar
to what we showed previously with aging male donor cells that
require serial BMT to produce B/M MPAL in young female
recipients [38]. The high incidences of B/M MPAL occurred in 4
out of 5 independent BMT experiments with donor cells from
25- to 29-month-old females in 36 young recipient mice. Our data
suggest that sex-dependent disparities in hematological aging and
leukemogenesis are intrinsic to hematological cells and that aging
female HSPCs are inherently more prone to developing differ-
entiation defects and MPAL or AML than males. In line with this,
long-lived female mice developed predominantly hematological
malignancies, including splenic lymphoma, B/M MPAL and AML,
while long-lived males developed predominantly lung adenocar-
cinoma (Fig. 3). The development of spontaneous B/M MPAL and
AML in long-lived females suggested that leukemia-initiating cells
may preexist in old females before BMT. Intriguingly, no significant
changes in BM cellularity or excessive adipogenesis were observed
in long-lived BALB/c males or females, although dilated sinusoids
of the BM were observed (Supplementary Fig. 4).

Sex-differentiated HSC aging
We next examined changes in BALB/c HSCs during aging. The
widely used HSC cell markers Sca-1 and CD150 do not enrich long
term (LT)-HSCs effectively in BALB/c mice [39, 40]. HSCs of BALB/c
mice reside exclusively in the lineage-negative side population
(shorted as SP) and both CD150+ and CD150- SP fractions contain
LT-HSCs [40]. SP has been shown to effectively track HSCs during
aging [18, 41]. Toward aging, BALB/c mice showed sex-specific
changes in SP cells (Fig. 4a). Males maintained greater SP
percentages throughout life (Fig. 4b), with lower SP fractions
increasing from 18 through 28 months (Fig. 4c, d). Females’ SP
remained stable till 18 months, then upper SP fractions surged by
28 months (Fig. 4c, d). This created a polarized SP pattern in mice
at 28 months with males skewing lower and females higher.
Furthermore, CD150+ SP cells moderately increased in aging
males, while dramatically decreasing in females by 28 months
(Fig. 4e). Conversely, CD150- SP cells spiked in long-lived females
(Fig. 4e). CD150+ SP cells were predominantly localized toward
the lower SP in long-lived males, with CD150- SP evenly
distributed. Long-lived females showed even CD150+ SP distribu-
tion, but CD150- SP cells concentrated in the upper fractions
(Fig. 4f). The changes in aging BALB/c male HSCs mirror previous
findings of expanding lower SP cells during aging, which are
enriched in CD150+ HSCs with myeloid-biased lineage potential
[18]. Our finding of highly CD150- enriched upper SP in long-lived
females is intriguing. While CD150- SP also contains long-term
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Fig. 1 Sex-dependent differences in hematological changes in aging and long-lived BALB/c mice. a Differential blood leukocyte counts of
males and females aged 3, 12, 18, and 28 months (M) were analyzed via an Idexx ProCyte Dx hematology analyzer. WBC, white blood cell; NE,
neutrophil; LY, lymphocyte. b The percentages of NE and LY cell counts and their ratios. c Peripheral blood leukocytes were analyzed by flow
cytometry. d Erythrocyte analysis of hemoglobin (HGB) levels, red blood cell (RBC) counts, reticulocyte (RET) percentage, and hematocrit (HCT)
in males vs females at different ages by Idexx ProCyte Dx. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. The error bars
represent one standard deviation.
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a–e Same-sex BMTs of 28-month-old donor cells to 3-month-old recipients. Peripheral blood cell counts (a), blood smear (b), flow cytometry
analysis of lineage cells (c), flow cytometry profiles of skewed myeloid differentiation (OF-YF1) and AML (OF-YF2) compared to a male recipient
(d), and Kaplan‒Meier survival curves (e). f–h Cross-sex BMTs of 25-month-old female and 28-month-old male donor cells to 3-month-old
recipients. Flow cytometry analysis of blood and bone marrow cells (f) and blood smears (g) from a leukemic OF-YM mouse and survival
curves for cross-sex BMTs (h). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. The error bars represent one standard
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Fig. 3 Sex-dependent differences in the tumor spectrum between long-lived male and long-lived female mice. a Complete histological
analysis was performed for diseased long-lived mice (25 females and 17 males) with an average age of 28.2 months. The percentage indicates
the incidence of tumor categories among the mice analyzed. Some mice had more than one tumor type. In females, myeloid leukemia
included AML and B/myeloid MPAL; ovarian tumors included ovarian carcinoma and hemangiosarcoma; and other tumors included
adenocarcinoma and soft tissue sarcoma in other organs. In males, other tumors included renal cell carcinoma, hepatoma, hemangiosarcoma
and adenocarcinoma. b, c Flow cytometry analysis of a long-lived female BALB/c mouse bearing B/M MPAL that was partially CD3e positive (b)
compared to the tail blood of 4-month-old and healthy 29-month-old females, with the latter displaying strong myeloid skewing (c).
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HSCs [40, 41], its biological significance remains unknown. Our
data suggest that CD150- SP cells may maintain hematological
functions in long-lived females.

Sex-dependent distinctions in the molecular signatures of
HSC aging
To better understand the mechanisms of HSC aging, we
performed scRNA-seq of SP cells. SP cells were purified from
healthy 3- and 28-month-old male or female mice, with 2 to
4 mice/group pooled to reduce individual mouse variations and
increase cell yields. An average of 1000 cells per sample with
satisfactory libraries were sequenced, and approximately 3500
genes were detected per cell (Supplementary Fig. 5a–c). Male and
female SPs displayed distinct clustering patterns at both 3 and
28 months (Fig. 5a, b and Supplementary Fig. 5d). Clusters 0, 1,
and 7 were more abundant in males, while clusters 2-5 were more

abundant in females. Aging males exhibited a notable increase in
cluster 0 and a decrease in cluster 1, while aging females
displayed an increase in clusters 3–5 (Fig. 5b, c).
Most of the SP cells were noncycling (Supplementary Fig. 6a).

The Y-linked Eif2s3y gene expression marked male samples
exclusively (Supplementary Fig. 6b). Slamf1 mRNA, which encodes
CD150, showed indiscriminate expression in all clusters of both
sexes (not shown), indicating that the protein, rather than the
mRNA of CD150, has a distinguishing role in male and female SPs.
Clusters were assigned to HSPC fractions based on gene
expression profiles and characteristics (Figs. 5a, 6a and Supple-
mentary Fig. 7). Cluster 0 was identified as LT-HSCs that were
negative for the surface markers CD48 and Flt3 (Supplementary
Fig. 7). Cluster 0 was more abundant in males than in females,
regardless of age, increasing from 30% of total SP cells in young
males to 63% in old males, while decreasing from 6% in young
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Fig. 4 Sex-dependent differences in hematopoietic stem/progenitor cells from aging and long-lived BALB/c mice. a Representative flow
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**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. The error bars represent one standard deviation.
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females to 4% in old females (Fig. 5b, c). Conversely, short-term
(ST)-HSCs (cluster 1) decreased from 43% in young males to 17%
in old males, suggesting a decline in the functional capacity of
male HSCs to produce progeny, a trend not observed in old
females (Fig. 5b, c). Cluster 2 comprised two subclusters:

multipotent progenitors (MPPs) and common myeloid progenitors
(CMPs), which was reduced in old females (Fig. 5c–e). Notably, old
females had increased megakaryocyte progenitors (MkPs, cluster
3), megakaryocyte-erythroid progenitors (MEPs, cluster 4), and
granulocyte-monocyte progenitors (GMPs, cluster 5). The increase
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in MEPs, MkPs and GMPs in old female SPs correlated with a more
severe anemia phenotype and greater myeloid skewing observed
in the long-lived females. Our findings demonstrate that SP cell
increases in old males primarily stem from LT-HSC expansion,
whereas the increase in SP cells in long-lived females results from
committed progenitor expansion coupled with modest HSC
increase.
Gene set enrichment analysis (GSEA) revealed that old male

and female HSC cluster 0 shared several upregulated signaling
pathways, including the TGFβ, TNFα, IL2-STAT5, IL6, interferon
(IFN) γ, hypoxia, and p53 pathways (Fig. 6b and Supplementary
Tables 1 and 2). These pathways are known to regulate normal
mouse HSC functions and aging. [18, 42–50] Interestingly, the
IFNα response was selectively activated in old female HSCs and
other SP clusters (Fig. 6b, c). Additionally, the autoimmune
disease, graft-versus-host disease (GvHD) and ribosome path-
ways were more selectively activated in the old female clusters
(Fig. 6c). The activation of these pathways, especially the
autoimmune and IFNα pathways, may be related to the
hemolytic anemia observed in old females. Furthermore, the
estrogen response and androgen response were selectively
activated in cluster 0 in old females and males, respectively (Fig.
6c). Notably, unlike women experiencing menopause, female
mice (C57BL/6 strain) undergo progressive reproductive senes-
cence starting around 12 months of age [51], with plasma E2
levels decreasing to nearly ovariectomized levels by 24 months
[52]. With low levels of circulating hormones in long-lived mice,
these findings may suggest in situ hormone production or
ligand-independent activation of these steroid receptors, as
revealed in breast cancer tissues [53].
Bulk RNA-seq of SP cells confirmed scRNA-seq findings,

revealing stark differences in aging between male and female
cells. Differentially expressed genes (DEGs) associated with aging
showed minimal overlap between sexes, while inter-sex DEGs
overlapped significantly across age groups (Supplementary Fig.
8a, b). GSEA revealed similar pathways in male SP cell aging
(Supplementary Fig. 8c and Supplementary Tables 3 and 4). Old
females exhibited activated IFNα response, whereas old males
showed a reduction. Old female SP cells enriched E2F targets, MYC
targets, G2/M checkpoint, and oxidative phosphorylation, reflect-
ing scRNA-seq clusters 3, 4, and 5 (Supplementary Tables 1 and 2).
Male bulk RNA-seq revealed both androgen and estrogen
signaling, mirroring scRNA-seq clusters 0 and 7 (Fig. 6c). In line
with the changes in sex hormone signaling, the anti-androgen
receptor (AR) signaling agent enzalutamide potently blocked
methylcellulose colony formation by aging male HSPCs (Supple-
mentary Fig. 9a), suggesting a crucial role of AR signaling in aging
male HSC functions. This is in contrast to young male mouse HSCs
on which castration has no significant impact [25]. The antiestro-
gen elacestrant moderately reduced methylcellulose colony
formation by aging female HSPCs after second plating (Supple-
mentary Fig. 9b), indicating that estrogen receptor signaling may

still play a role in the maintenance of aging female HSCs, as
observed in young mice [25]. Taken together, these data reveal
sex-dependent differences in SP cell clustering and HSC gene
expression in males and females during aging, which provides
insight into their distinct blood cell differentiation phenotypes.
The scRNA-seq data could be analyzed by comparing HSC sex

differences followed by age differences to address related but
different questions (Supplementary Fig. 10a). No significant
molecular differences were observed for LT-HSCs in young males
vs females, whereas differences in ST-HSCs and some progenitors
were observed (Supplementary Fig. 10b). Old females, however,
exhibited enhanced IFNα and IFNγ responses, starting in LT-HSCs
and amplifying in ST-HSCs. (Supplementary Fig. 10b). As in
phenotypic analysis, this sex-based comparison, while informative,
lacked the depth to uncover crucial age-related pathway changes
specific to each sex. This is not unexpected as aging is the main
driver of cellular abnormalities and diseases whereas sex plays an
auxiliary role.

Sex-dependent differences in HSC aging beyond BALB/c strain
To determine whether the observed sex-dependent differences in
HSC aging were BALB/c strain specific, we examined HSCs in aged
and young C57BL/6 mice of both sexes using SP- and LSK (Lin-Sca-
1+c-Kit+)-based methods (Supplementary Fig. 11). Unlike BALB/c
mice, old C57BL/6 mice didn’t undergo polarized SP changes in
two sexes. SP was expanded in old C57BL/6 mice in both sexes,
with old females exhibiting high variation (Fig. 7a). About 60% of
old females (subgroup A) had increased SP, while 40% didn’t. This
variability may stem from delayed HSC aging in females, as
intrinsic SP changes were only observed in the subgroup A (Fig.
7b). LT-HSCs, enriched by Lin-SP Flt3-CD150+CD48-, expanded
twice more in old males than females (Fig. 7c). LSK-based analysis
confirmed this trend, with old males showing twice the expansion
of old females (Fig. 7d). Therefore, the sex-dependent disparities in
aging HSC expansion occur in both BALB/c and C57BL/6 strains,
though more pronounced in BALB/c mice.
We cross-examined our scRNA-seq data with public scRNA-seq

datasets on HSC aging in mice of known sex. Comparison with
GSE59114 dataset [21] for aging C57BL/6 and DBA/2 females
confirmed the common HSC aging pathways described above
across three strains (Fig. 7e). Autoimmune-related pathways
intensified in aged female HSCs universally (Fig. 7f). Incorporating
another dataset (GSE147729) [54] for aging male HSCs maintained
these trends, despite increased variability (Supplementary Fig. 12).
Notably, IFNα/γ responses in LT-HSCs showed strain and sex
differences correlating with lifespan, particularly in BALB/c mice
(Fig. 7g). BALB/c LT-HSCs exhibited stronger androgen and
estrogen responses compared to other strains. Aged BALB/c
female HSCs uniquely displayed reduced adipogenesis, reactive
oxygen species activity, and protein secretion (Fig. 7e). These
factors may contribute to the pronounced sex-based differences
observed in BALB/c mice.

Fig. 5 Sex-dependent differences in aging mouse HSCs according to scRNA-seq analysis. a Main clusters in the aggregate of all samples (3-
and 28-month-old males and females). Overall, 8 clusters were assigned to the aggregates of all the samples, with the majority of cells forming
continuous clusters, except for cluster 6, which was a minor cluster distal to the main SP population and likely more differentiated cell
contaminants. Cluster 6 was removed from the view but can be found in Supplementary Fig. 5. b, c Split view of the main SP clusters in
separate samples according to sex and age (b) and the percentage of each cluster (c). YM, young male; OM, old male; YF, young female; OF, old
female. d, e Cluster 2 was reclustered into two subclusters (d) that exhibited different distributions in the aggregated UMAP (e). Clusters were
assigned to HSPCs according to key gene expression features as follows: cluster 0 for LT-HSCs that were negative for the surface markers CD48
and Flt3; cluster 1 for ST-HSCs that closely shared many signature genes with cluster 0 but had an increase in Flt3 and CD34 expression; cluster
2 had stronger activation of Flt3 and CD34; the lower part of cluster 2 (mostly subcluster 0) was assigned to MPP and the upper part (mostly
subcluster 1) was assigned to CMP; clusters 3 and 4 were assigned to MkP and MEP, respectively, as both enriched for platelet genes, including
Itga2b and Gp1bb; however, cluster 4 was less cycling and had lower Flt3; cluster 5 for GMP that was enriched for the marker genes Mpo, Ctsg,
Elane, Prtn3 and Ms4a3; and cluster 7 for common lymphoid progenitors (CLPs) that had a UMAP position close to clusters 0 and 1 but carried
its signature genes regulating B and T lymphoid cell development, including Erg1, Fos, Nr4a1, Nr4a2 and Nfkbia. In contrast, the MPP and CMP
cells were less well defined by gene signatures.
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Sex impact on BCR-ABL1 transformation and CML
development
We subsequently investigated the influence of sex on the
transformation of aging HSCs by a human oncogene. Old male but
not female BALB/c HSCs displayed an activated pathway for CML
(Figs. 6c and 7f), a disease resulting from the BCR-ABL1-mediated

transformation of HSCs [55]. CML is more prevalent in older men than
women, and this sex difference becomes less prominent at younger
ages [11, 12]. Mouse models are crucial for understanding CML and
developing therapies; however, previous models were based on
young mice. We have recently established the first aging mouse
model of CML at 18 months of age [34], enabling us to examine the
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effects of sex on BCR-ABL1 transformation and CML progression in a
context more reflective of elderly humans. Additionally, we showed
that SIRT1 is activated by BCR-ABL1 transformation and that knockout
of Sirt1 inhibits CML development in young mice [40, 56].

We performed BCR-ABL1 transformation of 18-month-old
Sirt1+/+ and Sirt1-/- donor cells and same-sex BMT in age-
matched wildtype BABL/c recipients with an equal number of
transduced cells, as described [34]. CML development was
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significantly faster in aging males than in aging females
(Fig. 8a, b), mirroring the higher incidence in older men. Faster
CML development in aging male mice than in aging females was
confirmed in a separate experiment for tyrosine kinase inhibitor
treatment (data not shown). Sirt1 knockout (KO) significantly
inhibited CML development in aging males, as observed in young
mice [40, 56], but unexpectedly had no effect on aging females
(Fig. 8a, b). CML developed with both Sirt1+/+ and Sirt1-/- donor
cells showed similar phenotypes with marked expansion of
neutrophils in the blood that were GFP+ and Mac1/Gr1+

(Fig. 8c, d) as described [34]. The lack of a Sirt1 KO effect in
aging females was not due to the slower disease kinetics because
increasing female BM cell transduction rates to accelerate CML
development still failed to distinguish Sirt1+/+ and Sirt1-/- CML
development (Fig. 8e). These results contrast with young mice,
where no sex-dependent disparities in CML development have
been noticed with or without Sirt1 loss [40, 56], suggesting female
HSC aging uniquely impacts Sirt1 KO influence on BCR-ABL1
transformation.
IFNα signaling was selectively activated in old female HSCs. IFNα

was the standard of care for CML before the TKI imatinib [57]. IFNα
can induce extremely stable event-free remission in some CML
patients [58–60]. IFNα signaling activation in aging female HSCs
may thus suppress the BCR-ABL1-mediated transformation of
HSCs and CML development. SIRT1 is critical for the activation of
type I IFN expression during infection [61]. Our microarray analysis
of SP cells from 18-month-old Sirt1-/- vs Sirt1+/+ mice [38] revealed
that Sirt1 KO reduced type I IFN induction (Fig. 8f). Therefore, Sirt1
KO may paradoxically self-antagonize the inhibitory effect of Sirt1
loss on BCR-ABL1 transformation in aging females by decreasing
IFNα signaling. The results demonstrated a sex-biased role of Sirt1
in the regulation of oncogenic transformation of HSCs in aging
mice.

DISCUSSION
In this report, we described sex-dependent differences in HSC aging
and leukemogenic potential in aging BALB/c mouse models. We
demonstrated that myeloid-biased differentiation in aging males was
driven by increasing myeloid cell output but by decreasing lymphoid
cell output in aging females. Long-lived female BALB/c mice were
more prone to developing hemolytic anemia and spontaneous
myeloid leukemia (AML and B/myeloid MPAL). In contrast, BCR-ABL1
transformation in aging BALB/c mice led to faster CML development
in aging males than in females. We showed that sex-dependent
disparities in HSPC aging underlie these phenotypical differences
between the two sexes. Male mice aged with a greater expansion of
HSCs than females. BALB/c male and female LT-HSCs shared many
aging pathways but differed in IFNα response and sex hormone
signaling among others. These molecular differences also distin-
guished the BALB/c strain from C57BL/6 and DBA/2 strains, making
BALB/c a better model for sex-differentiated hematological aging in
humans.
Multiple factors may contribute to faster CML development in

aging BALB/c males. First, the greater number of LT-HSCs in aging
males may result in more transformed HSCs. Second, old female HSCs’

heightened IFNα signaling may inhibit BCR-ABL1 transformation.
Third, the CML gene signature was detected in the old male LT-HSCs.
These factors might explain sex differences in human CML.
Conversely, long-lived female BALB/c mice developed AML or B/
myeloid MPAL, mirroring AML trends in humans over 80. While AML
generally affects men more [11, 12, 62], it’s more common in women
past 80 [62]. This shift is often attributed to women’s longer lifespans,
but chronic lymphocytic leukemia doesn’t show a similar pattern [63].
The mechanisms underlying the differences in leukemia types at
different ages are still unclear, but the cell of origin for leukemias may
provide an insight. CML stems from HSCs, while AML can originate
from progenitors or HSCs [64–67]. More HSCs in aging males could
yield more CML-initiating cells for faster CML development. In
contrast, increasing progenitors from old females would make them
more susceptible to AML/MPAL. Long-lived female mice showed
expanded progenitor cells, potentially fueling AML or MPAL. Without
BCR-ABL1 transformation, BMT with 110% lifespan BALB/c female
donors produced AML or MPAL, but not with 75% lifespan donors as
shown before [34]. Similarly, AML and MPAL have not been reported
in HSC aging studies in C57BL/6 mice where BMT donors are
generally under 24 months ( < 80% lifespan) [22]. Whether C57BL/6
donor mice at 110% lifespan would produce AML/MPAL phenotypes
is unknown. But strain differences may also play a role, as BALB/c
mice harbor a hypomorphic p16INK4a allele [28, 29], possibly increasing
leukemia susceptibility.
IFNα/γ responses in old LT-HSCs correlated with mouse lifespan.

Old BALB/c males showed reduced IFNα response, mirroring their
shorter lifespans. IFNα can stimulate HSC proliferation and promote
HSC functional attrition [42, 68]. Extended female mouse lifespan
occurred at the expense of enhanced myeloid skewing and hemolytic
anemia in old females. This aligns with women’s better survival during
viral infections like COVID-19 [69–71], yet higher susceptibility to
autoimmune diseases [2, 72] and that female bone marrow donor
cells trigger more GvHD in male recipients [73–75]. Thus, sex-
dependent disparities in HSC aging may influence these disorders
and warrant further research.
Sirt1 knockout unexpectedly hindered CML development in aging

male mice, but not females. This sex disparity may stem from IFNα
response differences. IFNα signaling decreases in human CML
leukemia stem cells (LSCs) [76], and some patients respond well to
IFNα therapy [58–60]; however, the mechanisms of IFNα action in
CML remain elusive. Increased IFNα response in aging female HSCs
could reduce CML-initiating cell potency. Conversely, diminished
HSC stemness might impede transformation into potent CML LSCs.
Both scenarios could weaken CML activity. Sirt1 knockout may
negate IFNα‘s suppressive effects in aging females, counteracting
CML inhibition through other pathways [40, 56, 77]. The intricate
interplay between Sirt1 knockout and IFNα signaling in aging mice
with CML warrants further investigation.
In conclusion, we demonstrate that sex shapes HSC aging and

leukemia development differently in males and females. Our
mouse models reveal patterns mirroring human sex disparities
in anemia and myeloid leukemia with age. Female HSCs show
less clonal expansion than males as they age, while committed
progenitors expand more in aging females. Sex-dependent
molecular differences of HSC aging underlie these phenotypic

Fig. 7 Comparison of HSC aging in different mouse strains. a SP HSPCs in 27 to 28-month-old C57BL/6 mice vs 3-month-old controls in two
sexes. Old females were divided into two groups with HSPCs% above (A) and below (B) the average. b SP compartment analysis for lower SP
fractions within total SP cells. c Frequencies of highly enriched HSCs based on SP separation. d Frequencies of highly enriched HSCs based on
LSK separation. e, f Comparison of BALB/c scRNA-seq data of this study with GSE59114 dataset for aging C57BL/6 and DBA/2 females, which
was analyzed directly using standard RNA-seq data analysis pipelines without reclassifying the cells. Cluster dendrograms for Hallmark (e) and
KEGG (f) aging pathways of LT-HSCs from three mouse strains were shown. g IFNα/γ responses from LT-HSCs vs mouse lifespan. C57BL/6, a
long-lived strain, activated IFNα and γ responses. DBA/2, shorter-lived, only triggered IFNα. BALB/c females outlived males, activating both
responses compared to males’ sole IFNγ activation. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant. The error bars
represent one standard deviation.
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disparities. These novel insights into sex-differential HSC aging
could inform targeted approaches for treating age-related blood
disorders in each sex.

MATERIALS AND METHODS
Animal studies were approved by the City of Hope Institutional Animal
Care and Use Committee. The details regarding animal housing, breeding,

genotyping, blood cell count, SP analysis, bone marrow transplantation,
CML mouse model, and histological analysis are provided in the
Supplementary Methods. Briefly, BALB/c (Taconic) and Sirt1 knockout
mice in this strain were bred and aged in house as described previously
[34]. Aged C57BL/6 mice were ordered from National Institute of Aging
aged rodent colonies and young C57BL/6 from Jax Mice. For transplanta-
tion with aging BALB/c BM cells, equal number of unfractionated BM
nucleated cells (three to five millions per mouse) were transplanted into
lethally irradiated recipients by retro-orbital injection. For CML studies, the
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BCR-ABL1 transduced lineage-depleted cells with an equal percentage of
GFP+ cells in 0.4 million total cells/mouse were transplanted. For SP
analysis, BM nucleated cells were labeled with Hoechst 33342, followed by
lineage depletion, and then surface marker staining for flow cytometry.
Anemia was defined as a hemoglobin concentration more than 2 standard
deviations below the mean of 3-month-old baseline hemoglobin values
[78].
The details of scRNA-seq and RNA-seq were provided in the

Supplementary Methods. Briefly, BM SP cells were fresh isolated from 2
to 4 mice per group, and at least 5000 SP cells were collected for each
sample. About 1000 cells were captured per sample on a 10xGenomics
Chromium controller using a 10X V3.1 Single Cell 3’ Solution kit. The
libraries were prepared and sequenced with the paired end setting on
Illumina NovaSeq 6000 platform with a depth of 100 –135 K reads per cell.
Raw sequencing data were processed and uploaded to R using the Seurat
package. Uniform Manifold Approximation and Projection (UMAP)
coordinates [79] were used to visualize the resulting clusters. Pathway
analysis was performed by GSEA 4.0.3 in Hallmark and KEGG terms. The
leftover cells from samples prepared for scRNA-seq were used for bulk
RNA-seq and the libraries were prepared with SMART-Seq® Ultra Low Input
RNA Kit. Sequencing was performed on Illumina HiSeq 2500 with the single
read mode. After filtration, 11,673 genes out of 22,850 genes with
RPKM ≥ 1 in at least one sample were used to generate hierarchical
clustering plot by CLUSTER 3.0. DEG were identified by edgeR (v.3.20.9)
and hierarchical clustering heatmap for DEG was generated. Pathway
changes were analyzed by GSEA.
For animal transplantation studies, Kaplan‒Meier survival analysis was

performed, and statistical significance was calculated using the log-rank
test. The two-tailed Student’s t-test was performed for other data analyses
except for anemia where one-tailed t-test was used for analyzing
hemoglobin reduction. P < 0.05 was considered statistically significant.
Error bars are shown with standard deviations. All the measurements were
taken from distinct samples.

DATA AVAILABILITY
The raw scRNA-seq and bulk RNA-seq data reported in this paper have been
deposited as SuperSeries files in GEO with the accession code GSE262181 (scRNA-seq
subseries GSE262145 and bulk RNA-seq subseries GSE262180). The GSEA reports of
the scRNA-seq and RNA-seq data are provided in Supplementary Tables 1–4. Any
remaining information can be obtained from the corresponding author upon
reasonable request.
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