Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting DDX3X eliminates leukemia stem cells in chronic myeloid leukemia by blocking NT5DC2 mRNA translation

Abstract

Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model. We found that DDX3X enhanced the survival, serially plating and long-term engraftment abilities of human primary CML CD34+ cells. Inhibition of DDX3X reduced leukemia burden, eradicated LSCs and extended the survival of CML mice. Mechanistically, we uncovered that DDX3X protein bound to 5′-Nucleotidase Domain Containing 2 (NT5DC2) mRNA and promoted its translation in CML cells. NT5DC2 was a functional mediator in DDX3X regulation of LSCs. Collectively, our findings provide new evidence for RNA helicase facilitating the translation of specific mRNA in LSCs. Targeting DDX3X may represent a promising therapeutic strategy for eradication of LSCs in CML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting DDX3X inhibits the survival and serially plating features of human CML CD34+ cells.
Fig. 2: DDX3X inhibitor RK-33 suppresses the long-term engraftment ability of human CML CD34+ cells in NCG mice.
Fig. 3: RK-33 prolongs the survival of CML mice and eliminates LSCs.
Fig. 4: Ddx3x knockdown eliminates LSCs and inhibits the development of CML mice.
Fig. 5: DDX3X promotes the mRNA translation of NT5DC2 in CML cells.
Fig. 6: NT5DC2 knockdown induces apoptosis and inhibits the serially plating ability of human CML CD34+ cells.
Fig. 7: Nt5dc2 knockdown eliminates LSCs and inhibits the development of CML mice.
Fig. 8: Restoration of NT5DC2 rescues the Ddx3x knockdown-mediated elimination of LSCs in CML mice.

Similar content being viewed by others

Data availability

All data in this study are available in the main text or the supplementary information.

References

  1. Cortes J, Pavlovsky C, Saussele S. Chronic myeloid leukaemia. Lancet. 2021;398:1914–26.

    PubMed  Google Scholar 

  2. Bourne G, Bhatia R, Jamy O. Treatment-free remission in chronic myeloid leukemia. J Clin Med. 2024;13:2567.

    PubMed  PubMed Central  Google Scholar 

  3. Ito K, Ito K. Leukemia stem cells as a potential target to achieve therapy-free remission in chronic myeloid leukemia. Cancers. 2021;13:5822.

    PubMed  PubMed Central  Google Scholar 

  4. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6:403–12.

    PubMed  PubMed Central  Google Scholar 

  5. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121:396–409.

    PubMed  Google Scholar 

  6. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119:1501–10.

    PubMed  PubMed Central  Google Scholar 

  7. Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543–56.

    PubMed  PubMed Central  Google Scholar 

  8. Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S, et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011;118:3657–60.

    PubMed  PubMed Central  Google Scholar 

  9. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. 2011;118:5565–72.

    PubMed  PubMed Central  Google Scholar 

  10. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12:528–41.

    PubMed  PubMed Central  Google Scholar 

  11. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–9.

    PubMed  PubMed Central  Google Scholar 

  12. Allan EK, Holyoake TL, Craig AR, Jørgensen HG. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia. 2011;25:985–94.

    PubMed  Google Scholar 

  13. Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8:355ra117.

    PubMed  PubMed Central  Google Scholar 

  14. Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med. 2017;23:1234–40.

    PubMed  PubMed Central  Google Scholar 

  15. Rattigan KM, Brabcova Z, Sarnello D, Zarou MM. Pyruvate anaplerosis is a targetable vulnerability in persistent leukaemic stem cells. Nat Commun. 2023;14:4634.

    PubMed  PubMed Central  Google Scholar 

  16. Rattigan KM, Zarou MM. Arginine dependency is a therapeutically exploitable vulnerability in chronic myeloid leukaemic stem cells. EMBO Rep. 2023;24:e56279.

    PubMed  PubMed Central  Google Scholar 

  17. Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y, et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest. 2016;126:3961–80.

    PubMed  PubMed Central  Google Scholar 

  18. Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21:266–81.

    PubMed  PubMed Central  Google Scholar 

  19. Liu C, Zou W, Nie D, Li S, Duan C, Zhou M, et al. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab. 2022;34:818–835.e817.

    PubMed  Google Scholar 

  20. Xie H, Peng C, Huang J, Li BE, Kim W, Smith EC, et al. Chronic myelogenous leukemia-initiating cells require polycomb group protein EZH2. Cancer Discov. 2016;6:1237–47.

    PubMed  PubMed Central  Google Scholar 

  21. Bührer ED, Amrein MA. Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia. 2022;36:2634–46.

    PubMed  PubMed Central  Google Scholar 

  22. Dolinska M, Cai H. Characterization of the bone marrow niche in patients with chronic myeloid leukemia identifies CXCL14 as a new therapeutic option. Blood. 2023;142:73–89.

    PubMed  PubMed Central  Google Scholar 

  23. Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol. 2021;10:39.

    PubMed  PubMed Central  Google Scholar 

  24. Mo J, Liang H, Su C, Li P, Chen J, Zhang B. DDX3X: structure, physiologic functions and cancer. Mol Cancer. 2021;20:38.

    PubMed  PubMed Central  Google Scholar 

  25. Calviello L, Venkataramanan S. DDX3 depletion represses translation of mRNAs with complex 5′ UTRs. Nucleic Acids Res. 2021;49:5336–50.

    PubMed  PubMed Central  Google Scholar 

  26. Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648–69.

    PubMed  PubMed Central  Google Scholar 

  27. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P Jr., et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008;27:3912–22.

    PubMed  PubMed Central  Google Scholar 

  28. Wilky BA, Kim C, McCarty G, Montgomery EA, Kammers K, DeVine LR, et al. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma. Oncogene. 2016;35:2574–83.

    PubMed  Google Scholar 

  29. Xie M, Vesuna F, Tantravedi S, Bol GM, Heerma van Voss MR, Nugent K, et al. RK-33 radiosensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Res. 2016;76:6340–50.

    PubMed  PubMed Central  Google Scholar 

  30. Zhao T, Zhu H, Zou T, Zhao S, Zhou L. DDX3X interacts with SIRT7 to promote PD-L1 expression to facilitate PDAC progression. Oncogenesis. 2024;13:8.

    PubMed  PubMed Central  Google Scholar 

  31. Koshio J, Kagamu H, Nozaki K, Saida Y, Tanaka T, Shoji S, et al. DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked is an immunogenic target of cancer stem cells. Cancer Immunol Immunother. 2013;62:1619–28.

    PubMed  PubMed Central  Google Scholar 

  32. Shriwas O, Priyadarshini M, Samal SK, Rath R, Panda S, Das Majumdar SK, et al. DDX3 modulates cisplatin resistance in OSCC through ALKBH5-mediated m(6)A-demethylation of FOXM1 and NANOG. Apoptosis. 2020;25:233–46.

    PubMed  Google Scholar 

  33. Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. Genes that escape from X inactivation. Hum Genet. 2011;130:237–45.

    PubMed  PubMed Central  Google Scholar 

  34. Chen CY, Chan CH, Chen CM, Tsai YS, Tsai TY, Wu Lee YH, et al. Targeted inactivation of murine Ddx3x: essential roles of Ddx3x in placentation and embryogenesis. Hum Mol Genet. 2016;25:2905–22.

    PubMed  Google Scholar 

  35. Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, et al. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell. 2021;81:4059–4075.e4011.

    PubMed  Google Scholar 

  36. Chen HH, Yu HI, Cho WC, Tarn WY. DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene. 2015;34:2790–800.

    PubMed  Google Scholar 

  37. Tantravedi S, Vesuna F, Winnard PT Jr., Martin A, Lim M, Eberhart CG, et al. Targeting DDX3 in medulloblastoma using the small molecule inhibitor RK-33. Transl Oncol. 2019;12:96–105.

    PubMed  Google Scholar 

  38. Liu C, Lin X, Jin Y, Pan J. Protocol for isolation and analysis of the leukemia stem cells in BCR-ABL-driven chronic myelogenous leukemia mice. STAR Protoc. 2023;4:102123.

    PubMed  PubMed Central  Google Scholar 

  39. Guo S, Ran H, Xiao D, Huang H, Mi L, Wang X, et al. NT5DC2 promotes tumorigenicity of glioma stem-like cells by upregulating fyn. Cancer Lett. 2019;454:98–107.

    PubMed  Google Scholar 

  40. Jin X, Liu X, Zhang Z, Xu L. NT5DC2 suppression restrains progression towards metastasis of non-small-cell lung cancer through regulation p53 signaling. Biochem Biophys Res Commun. 2020;533:354–61.

    PubMed  Google Scholar 

  41. Li KS, Zhu XD, Liu HD, Zhang SZ, Li XL, Xiao N, et al. NT5DC2 promotes tumor cell proliferation by stabilizing EGFR in hepatocellular carcinoma. Cell Death Dis. 2020;11:335.

    PubMed  PubMed Central  Google Scholar 

  42. Ryan CS, Schroder M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation. Front Cell Dev Biol. 2022;10:1033684.

    PubMed  PubMed Central  Google Scholar 

  43. He Y, Zhang D, Yang Y, Wang X, Zhao X, Zhang P, et al. A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). Oncol Rep. 2018;39:883–92.

    PubMed  Google Scholar 

  44. Lee CH, Lin SH, Yang SF, Yang SM, Chen MK, Lee H, et al. Low/negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer. Oral Dis. 2014;20:76–83.

    PubMed  Google Scholar 

  45. Su CY, Lin TC, Lin YF, Chen MH, Lee CH, Wang HY, et al. DDX3 as a strongest prognosis marker and its downregulation promotes metastasis in colorectal cancer. Oncotarget. 2015;6:18602–12.

    PubMed  PubMed Central  Google Scholar 

  46. Wu DW, Liu WS, Wang J, Chen CY, Cheng YW, Lee H. Reduced p21(WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin Cancer Res. 2011;17:1895–905.

    PubMed  Google Scholar 

  47. Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet. 2015;47:1061–6.

    PubMed  Google Scholar 

  48. Ojha J, Secreto CR, Rabe KG, Van Dyke DL, Kortum KM, Slager SL, et al. Identification of recurrent truncated DDX3X mutations in chronic lymphocytic leukaemia. Br J Haematol. 2015;169:445–8.

    PubMed  Google Scholar 

  49. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    PubMed  PubMed Central  Google Scholar 

  50. Lai MC, Chang WC, Shieh SY, Tarn WY. DDX3 regulates cell growth through translational control of cyclin E1. Mol Cell Biol. 2010;30:5444–53.

    PubMed  PubMed Central  Google Scholar 

  51. Hu B, Zhou S, Hu X, Zhang H, Lan X, Li M, et al. NT5DC2 promotes leiomyosarcoma tumour cell growth via stabilizing unpalmitoylated TEAD4 and generating a positive feedback loop. J Cell Mol Med. 2021;25:5976–87.

    PubMed  PubMed Central  Google Scholar 

  52. Han H, Yang C. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022;13:1478.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 82373897 to YJ), the Guangdong Basic and Applied Basic Research Foundation (No. 2024A1515010138 to YJ), Basic and Applied Basic Research Project of Guangzhou Basic Research Program (Nos. 2024A04J3325 and 2024A03J0451 to CL).

Author information

Authors and Affiliations

Contributions

Chen Duan, Xiaoying Lin, Qi He, Chang Liu, and Yanli Jin designed the research. Chen Duan, Xiaoying Lin, Qi He, and Fen Wei performed the experiments, analyzed, and interpreted the data. Waiyi Zou provided CML patient samples and information. Chang Liu and Yanli Jin advised on experiments and provided reagents. Chang Liu and Yanli Jin wrote the manuscript. Jingxuan Pan and Yanli Jin supervised the entire study. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jingxuan Pan, Chang Liu or Yanli Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. This study involving patient samples was approved by the Jinan University Ethics Committee (JNUKY-2023-0063). Written informed consent was obtained from all CML patients. The animal experiments were performed with the approval of the Institutional Animal Care and Use Committee of South China University of Technology (2024108).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Lin, X., Zou, W. et al. Targeting DDX3X eliminates leukemia stem cells in chronic myeloid leukemia by blocking NT5DC2 mRNA translation. Oncogene 44, 241–254 (2025). https://doi.org/10.1038/s41388-024-03215-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03215-w

Search

Quick links