Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrative analysis identifies the atypical repressor E2F8 as a targetable transcriptional activator driving lethal prostate cancer

Abstract

Acquired resistance to androgen receptor (AR)-targeted therapies underscores the need to identify alternative therapeutic targets for treating lethal prostate cancer. In this study, we evaluated the prognostic significance of 1635 human transcription factors (TFs) by analyzing castration-resistant prostate cancer (CRPC) datasets from the West and East Stand Up to Cancer (SU2C) cohorts. Through this screening approach, we identified E2F8, a putative transcriptional repressor, as a TF consistently associated with poorer patient outcomes in both cohorts. Notably, E2F8 is highly expressed and active in AR-negative CRPC compared to AR-positive CRPC. Integrative profiling of E2F8 cistromes and transcriptomes in AR-negative CRPC cells revealed that E2F8 directly and non-canonically activates target oncogenes involved in cancer-associated pathways. To target E2F8 in CRPC, we employed the CRISPR/CasRx system to knockdown E2F8 mRNA, resulting in effective and specific downregulation of E2F8 and its target oncogenes, as well as significant growth inhibition in AR-negative CRPC in both cultured cells and xenograft models. Our findings identify and characterize E2F8 as a targetable transcriptional activator driving CRPC, particularly the growth of AR-negative CRPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of E2F8 as a putative oncogenic TF through in silico screening of PCa datasets.
Fig. 2: E2F8 is an oncogenic TF in AR-negative PCa.
Fig. 3: Characterization of E2F8-regulated cistromes and transcriptomes in AR-negative PC3 and DU145 cells.
Fig. 4: Functional characterization of E2F8-activated target genes.
Fig. 5: CRISPR/CasRx-mediated potent knockdown of E2F8 mRNA with high specificity.
Fig. 6: Nanoparticle-based CRISPR/CasRx/pre-gE2F8 treatment inhibits prostate tumor growth in xenograft mouse models.
Fig. 7: TT3 LLN effectively delivers CasRx/pre-gE2F8 RNA into engrafted DU145 tumors with no toxicity.

Similar content being viewed by others

Data availability

ChIP-seq and RNA-seq data have been deposited at the NCBI Gene Expression Omnibus (GEO) with accession number of GSE275631.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Ku SY, Gleave ME, Beltran H. Towards precision oncology in advanced prostate cancer. Nat Rev Urol. 2019;16:645–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Westaby D, Fenor de La Maza MLD, Paschalis A, Jimenez-Vacas JM, Welti J, de Bono J, et al. A new old target: androgen receptor signaling and advanced prostate cancer. Annu Rev Pharmacol Toxicol. 2022;62:131–53.

    CAS  PubMed  Google Scholar 

  4. Germain L, Lafront C, Paquette V, Neveu B, Paquette JS, Pouliot F, et al. Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol. 2023;20:480–93.

    PubMed  Google Scholar 

  5. Schmidt KT, Huitema ADR, Chau CH, Figg WD. Resistance to second-generation androgen receptor antagonists in prostate cancer. Nat Rev Urol. 2021;18:209–26.

    CAS  PubMed  Google Scholar 

  6. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;162:454.

    CAS  PubMed  Google Scholar 

  7. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174:758–69.e759.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52:778–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Z, Zhou C, Li X, Barnes SD, Deng S, Hoover E, et al. Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation. Cancer Cell. 2020;37:584–98.e511.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu Y, Yang Y, Wang Z, Sjostrom M, Jiang Y, Tang Y, et al. ZNF397 deficiency triggers TET2-driven lineage plasticity and AR-targeted therapy resistance in prostate cancer. Cancer Discov. 2024;14:1496–1521.

    PubMed  PubMed Central  Google Scholar 

  12. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonda TJ, Ramsay RG. Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer. 2015;15:686–94.

    CAS  PubMed  Google Scholar 

  14. Chen A, Koehler AN. Transcription factor inhibition: lessons learned and emerging targets. Trends Mol Med. 2020;26:508–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.

    CAS  PubMed  Google Scholar 

  16. Christensen J, Cloos P, Toftegaard U, Klinkenberg D, Bracken AP, Trinh E, et al. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 2005;33:5458–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Logan N, Graham A, Zhao X, Fisher R, Maiti B, Leone G, et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene. 2005;24:5000–4.

    CAS  PubMed  Google Scholar 

  18. Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN, Hsu PD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell. 2018;173:665–76.e614.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, et al. Molecular evolution of early-onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell. 2018;34:996–1011.e1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Google Scholar 

  21. Anselmino N, Labanca E, Shepherd PDA, Dong J, Yang J, Song X, et al. Integrative molecular analyses of the MD Anderson Prostate Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res. 2024;30:2272–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Formaggio N, Rubin MA, Theurillat JP. Loss and revival of androgen receptor signaling in advanced prostate cancer. Oncogene. 2021;40:1205–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Makkonen H, Kauhanen M, Jääskeläinen T, Palvimo JJ. Androgen receptor amplification is reflected in the transcriptional responses of vertebral-cancer of the prostate cells. Mol Cell Endocrinol. 2011;331:57–65.

    CAS  PubMed  Google Scholar 

  25. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kent LN, Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer. 2019;19:326–38.

    CAS  PubMed  Google Scholar 

  27. Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, et al. Expanding roles of the E2F-RB-p53 pathway in tumor suppression. Biology. 2023;12:1511.

    PubMed  PubMed Central  Google Scholar 

  28. Li S, Wan C, Zheng R, Fan J, Dong X, Meyer CA, et al. Cistrome-GO: a web server for functional enrichment analysis of transcription factor ChIP-seq peaks. Nucleic Acids Res. 2019;47:W206–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park HW, Song MS, Sim HJ, Ryu PD, Lee SY. The role of the voltage-gated potassium channel, Kv2.1 in prostate cancer cell migration. BMB Rep. 2021;54:130–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shiozaki A, Konishi T, Kosuga T, Kudou M, Kurashima K, Inoue H, et al. Roles of voltage-gated potassium channels in the maintenance of pancreatic cancer stem cells. Int J Oncol. 2021;59:76.

    PubMed  PubMed Central  Google Scholar 

  31. Zhu P, Lu T, Chen Z, Liu B, Fan D, Li C, et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron. 2022;110:2268–82.e2264.

    CAS  PubMed  Google Scholar 

  32. Ge C, Yan J, Yuan X, Xu G. A positive feedback loop between tryptophan hydroxylase 1 and β-Catenin/ZBP-89 signaling promotes prostate cancer progression. Front Oncol. 2022;12:923307.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui Z, Zeng C, Huang F, Yuan F, Yan J, Zhao Y, et al. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat Chem Biol. 2022;18:1056–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. He B, Peng W, Huang J, Zhang H, Zhou Y, Yang X, et al. Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein Cell. 2020;11:518–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kushawah G, Hernandez-Huertas L, Abugattas-Nuñez Del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, et al. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev Cell. 2020;54:805–17.e807.

    CAS  PubMed  Google Scholar 

  36. Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods. 2021;18:499–506.

    CAS  PubMed  Google Scholar 

  37. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  38. Li B, Luo X, Deng B, Wang J, McComb DW, Shi Y, et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015;15:8099–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kluin RJC, Kemper K, Kuilman T, de Ruiter JR, Iyer V, Forment JV, et al. XenofilteR: computational deconvolution of mouse and human reads in tumor xenograft sequence data. BMC Bioinform. 2018;19:366.

    CAS  Google Scholar 

  40. Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, et al. ONECUT2 acts as a lineage plasticity driver in adenocarcinoma as well as neuroendocrine variants of prostate cancer. Nucleic Acids Res. 2024;52:7740–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Joglekar T, Lin J, Shibata M. ONECUT2 is a novel target for treatment of castration-resistant prostate cancer. Expert Opin Ther Targets. 2020;24:89–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee JK, Bangayan NJ, Chai T, Smith BA, Pariva TE, Yun S, et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci USA. 2018;115:E4473–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaidi S, Park J, Chan JM, Roudier MP, Zhao JL, Gopalan A, et al. Single-cell analysis of treatment-resistant prostate cancer: implications of cell state changes for cell surface antigen-targeted therapies. Proc Natl Acad Sci USA. 2024;121:e2322203121.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Baumgart SJ, Nevedomskaya E, Haendler B. Dysregulated transcriptional control in prostate cancer. Int J Mol Sci. 2019;20:2883.

    PubMed  PubMed Central  Google Scholar 

  45. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155:1309–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet. 2015;47:1346–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Baca SC, Takeda DY, Seo JH, Hwang J, Ku SY, Arafeh R, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat Commun. 2021;12:1979.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Saha AK, Contreras-Galindo R, Niknafs YS, Iyer M, Qin T, Padmanabhan K, et al. The role of the histone H3 variant CENPA in prostate cancer. J Biol Chem. 2020;295:8537–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Takeuchi I, Takaha N, Nakamura T, Hongo F, Mikami K, Kamoi K, et al. High mobility group protein AT-hook 1 (HMGA1) is associated with the development of androgen independence in prostate cancer cells. Prostate. 2012;72:1124–32.

    CAS  PubMed  Google Scholar 

  50. Gibbs ZA, Reza LC, Cheng CC, Westcott JM, McGlynn K, Whitehurst AW. The testis protein ZNF165 is a SMAD3 cofactor that coordinates oncogenic TGFá signaling in triple-negative breast cancer. eLife. 2020;9:e57679

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu P, Zhou Y, Dong X, Zheng B, Liang B, Liang R, et al. ZNF165 is involved in the regulation of immune microenvironment and promoting the proliferation and migration of hepatocellular carcinoma by AhR/CYP1A1. J Immunol Res. 2022;2022:4446805.

    PubMed  PubMed Central  Google Scholar 

  52. Zhu J, Wu Y, Yu Y, Li Y, Shen J, Zhang R. MYBL1 induces transcriptional activation of ANGPT2 to promote tumor angiogenesis and confer sorafenib resistance in human hepatocellular carcinoma. Cell Death Dis. 2022;13:727.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX, Wang KS, et al. E2F8 contributes to human hepatocellular carcinoma via regulating cell proliferation. Cancer Res. 2010;70:782–91.

    CAS  PubMed  Google Scholar 

  54. Park SA, Platt J, Lee JW, L¢pez-Gir ldez F, Herbst RS, Koo JS. E2F8 as a novel therapeutic target for lung cancer. J Natl Cancer Inst. 2015;107:djv151.

    PubMed  PubMed Central  Google Scholar 

  55. Kent LN, Rakijas JB, Pandit SK, Westendorp B, Chen HZ, Huntington JT, et al. E2f8 mediates tumor suppression in postnatal liver development. J Clin Invest. 2016;126:2955–69.

    PubMed  PubMed Central  Google Scholar 

  56. Thurlings I, Martínez-López LM, Westendorp B, Zijp M, Kuiper R, Tooten P, et al. Synergistic functions of E2F7 and E2F8 are critical to suppress stress-induced skin cancer. Oncogene. 2017;36:829–39.

    CAS  PubMed  Google Scholar 

  57. Lee DY, Lee S, Kim YS, Park S, Bae SM, Cho EA, et al. Cyclosporin A inhibits prostate cancer growth through suppression of E2F8 transcription factor in a MELK-dependent manner. Oncol Rep. 2023;50:218.

    PubMed  PubMed Central  Google Scholar 

  58. Lee S, Park YR, Kim SH, Park EJ, Kang MJ, So I, et al. Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016;5:2899–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bushweller JH. Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer. 2019;19:611–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Henley MJ, Koehler AN. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat Rev Drug Discov. 2021;20:669–88.

    CAS  PubMed  Google Scholar 

  61. Sayegh N, Swami U, Agarwal N. Recent advances in the management of metastatic prostate cancer. JCO Oncol Pract. 2022;18:45–55.

    PubMed  Google Scholar 

  62. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15:313–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen Z, Hankey W, Zhao Y, Groth J, Huang F, Wang H, et al. Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling. Nat Commun. 2021;12:6318.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen Z, Ye Z, Soccio RE, Nakadai T, Hankey W, Zhao Y, et al. Phosphorylated MED1 links transcription recycling and cancer growth. Nucleic Acids Res. 2022;50:4450–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    PubMed  PubMed Central  Google Scholar 

  67. Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 2011;12:R83.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Y, Su Z, Zhao W, Zhang X, Momin N, Zhang C, et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer. 2020;1:882–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen Z, Wu D, Thomas-Ahner JM, Lu C, Zhao P, Zhang Q, et al. Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proc Natl Acad Sci USA. 2018;115:6810–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Duke BioRepository & Precision Pathology Center for tissue sections and HE staining. We also thank Ling Wang from the Animal Histopathology and Laboratory Medicine Core at UNC-Chapel Hill for performing animal hematological and clinical chemistry tests.

Funding

This work was supported by the Department of Defense (DoD) Early Investigator Award (W81XWH-22-1-0039 to FH) and by the Department of Pathology, Duke University School of Medicine (to QW).

Author information

Authors and Affiliations

Authors

Contributions

QW, FH, and WH conceptualized and designed the study; WH performed the initial screening of TFs correlation analysis with patient survival. FH and KL performed ChIP-seq and RNA-seq experiments; ZC, KF, VXJ, and FH analyzed the results from ChIP-seq and RNA-seq experiment; YD provided TT3 LLN and experimental guidance for in vivo nanotherapy study; JY synthesized the CasRx mRNA; Z.Cui performed encapsulation of CasRx mRNA and pre-gE2F8 oligos, or luciferase mRNA with TT3 LLN; FH and KL performed therapeutic assessment of TT3 encapsulating CasRx/pre-gE2F8 system in mice; WH and HW provided constructive discussion and contributed to manuscript writing and editing; FH, KL, and QW wrote the manuscript, with all authors contributing to the writing and providing feedback.

Corresponding author

Correspondence to Qianben Wang.

Ethics declarations

Competing interests

QW, ZC, and YD are inventors on a patent filed by Duke University that relates to the research reported in this paper. The remaining authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. All animal experiments were conducted in accordance with the guidelines of the Association for Assessment and Accreditation of Laboratory Animal Care International and the protocol (A176-21-08-24) approved by Duke University Medical Center Institutional Animal Care and Use Committee. Clinical and expression data of prostate cancer patients were obtained from publicly available repositories and were anonymized before access. Informed consent from patients was obtained through the respective dataset sources. This study does not involve identifiable images from human research participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Li, K., Chen, Z. et al. Integrative analysis identifies the atypical repressor E2F8 as a targetable transcriptional activator driving lethal prostate cancer. Oncogene 44, 481–493 (2025). https://doi.org/10.1038/s41388-024-03239-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03239-2

This article is cited by

Search

Quick links