Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mevalonate kinase inhibits anti-tumor immunity by impairing the tumor cell-intrinsic interferon response in microsatellite instability colorectal cancer

Abstract

Insufficient tumor cell-intrinsic interferon response represents a major obstacle in immune checkpoint blockade (ICB) therapy, particularly in anti-PD-1 treatment. Although cholesterol metabolism has been demonstrated to be a critical regulator of anti-tumor immune responses, whether cholesterol influences tumor cell-intrinsic interferon response in microsatellite instability (MSI) colorectal cancer (CRC) remains unknown. Through comprehensive siRNA library screening and Gene Set Enrichment Analysis (GSEA), we identified mevalonate kinase (MVK) as a crucial negative regulator of tumor cell-intrinsic interferon response in MSI CRC cells. Genetic ablation of MVK resulted in significant upregulation of Th1 type chemokines (CXCL9 and CXCL10) and enhanced CD8+T cell infiltration in MSI CRC, consequently leading to marked tumor growth suppression in immunocompetent mice. At the molecular level, we demonstrated that MVK physically interacts with the transcriptional activation domain (TAD) of signal transducer and activator of transcription 1 (STAT1). This interaction substantially impairs STAT1 nuclear translocation, thereby attenuating interferon signaling cascade. Furthermore, analyses of humanized PBMC-PDX models and clinical cohorts of MSI CRC patients revealed that reduced MVK expression in tumor tissues strongly correlates with favorable responses to anti-PD-1 therapy. Collectively, our findings establish MVK as a pivotal mediator in cholesterol synthesis pathway that negatively regulates tumor cell-intrinsic interferon response in MSI CRC. These results suggest that therapeutic targeting of MVK represents a promising strategy to enhance ICB efficacy through potentiation of interferon responses in MSI CRC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MVK impairs the tumor cell-intrinsic interferon response in MSI CRC.
Fig. 2: MVK influences the growth of MSI CRC via the tumor cell-intrinsic interferon response.
Fig. 3: MVK significantly modifies the cytotoxic T lymphocytes (CTL) in MSI CRC tumor.
Fig. 4: MVK impairs the phosphorylation of STAT1 within the interferon response.
Fig. 5: MVK replenishment in MVK-deficient tumor cells re-suppresses the interferon response.
Fig. 6: Suppression of MVK improves the effectiveness of immunotherapy in MSI CRC.
Fig. 7: The expression of MVK influences the immunotherapy response in MSI CRC patients.

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Asaoka Y, Ijichi H, Koike K. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;373:1979.

    Article  PubMed  Google Scholar 

  2. Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2022;23:659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II checkmate 142 study. J Clin Oncol. 2022;40:161–70.

    Article  CAS  PubMed  Google Scholar 

  4. Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.

    Article  CAS  PubMed  Google Scholar 

  5. Vesely MD, Zhang T, Chen L. Resistance mechanisms to Anti-PD cancer immunotherapy. Annu Rev Immunol. 2022;40:45–74.

    Article  CAS  PubMed  Google Scholar 

  6. Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to Anti-CTLA-4 therapy. Cell 2016;167:397–404.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun. 2017;8:15440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–47.

    Article  CAS  PubMed  Google Scholar 

  10. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson JC, Davis C, Deshpande C, Hwang WT, Jeffries S, Huang A, et al. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J Immunother Cancer. 2020;8:e000974.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bortolomeazzi M, Keddar MR, Montorsi L, Acha-Sagredo A, Benedetti L, Temelkovski D, et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts. Gastroenterology. 2021;161:1179–93.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang C, Li D, Xiao B, Zhou C, Jiang W, Tang J, et al. B2M and JAK1/2-mutated MSI-H colorectal carcinomas can benefit from anti-PD-1 therapy. J Immunother. 2022;45:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, et al. Reduction of squalene epoxidase by cholesterol accumulation accelerates colorectal cancer progression and metastasis. Gastroenterology. 2021;160:1194–1207.e28.

    Article  CAS  PubMed  Google Scholar 

  16. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, et al. Cholesterol induces CD8 + T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30:143–e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu J, Liu N, Song D, Steer CJ, Zheng G, Song G. A positive feedback between cholesterol synthesis and the pentose phosphate pathway rather than glycolysis promotes hepatocellular carcinoma. Oncogene. 2023;42:2892–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao W, Hu C, Ni Y, Wang J, Jiao K, Zhou M, et al. 27-Hydroxycholesterol activates the GSK-3β/β-catenin signaling pathway resulting in intestinal fibrosis by inducing oxidative stress: effect of dietary interventions. Inflamm Res. 2024;73:289–304.

    Article  CAS  PubMed  Google Scholar 

  19. Wen YA, Xiong X, Zaytseva YY, Napier DL, Vallee E, Li AT, et al. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 2018;9:265.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu C, Liu R, Wang B, Lian J, Yao Y, Sun H, et al. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J Immunother Cancer. 2021;9(Jan):e001895.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Philips RL, Wang Y, Cheon H, Kanno Y, Gadina M, Sartorelli V, et al. The JAK-STAT pathway at 30: much learned, much more to do. Cell. 2022;185:3857–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol Cancer. 2017;16:116.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, et al. Cholesterol induces CD8 + T cell exhaustion in the tumor microenvironment. Cell Metab. 2019;30:143–156.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang F, Beck-García K, Zorzin C, Schamel WW, Davis MM. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol. 2016;17:844–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jia WJ, Jiang S, Tang QL, Shen D, Xue B, Ning W, et al. Geranylgeranyl diphosphate synthase modulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation. Am J Pathol. 2016;186:1454–65.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou W, Liu H, Yuan Z, Zundell J, Towers M, Lin J, et al. Targeting the mevalonate pathway suppresses ARID1A-inactivated cancers by promoting pyroptosis. Cancer Cell. 2023;41:740–756.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang KL, Zhu WW, Wang SH, Gao C, Pan JJ, Du ZG, et al. Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer. Theranostics. 2021;11:6560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Albacker LA, Wu J, Smith P, Warmuth M, Stephens PJ, Zhu P, et al. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS One. 2017;12:e0176181.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Du W, Hua F, Li X, Zhang J, Li S, Wang W, et al. Loss of optineurin drives cancer immune evasion via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation. Cancer Discov. 2021;11:1826–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Middha S, Yaeger R, Shia J, Stadler ZK, King S, Guercio S, et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis Oncol. 3. 2019. PO.18.00321.

  32. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, et al. USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 2022;13:5644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pisanti S, Picardi P, Ciaglia E, D’Alessandro A, Bifulco M. Novel prospects of statins as therapeutic agents in cancer. Pharm Res. 2014;88:84–98.

    Article  CAS  Google Scholar 

  35. Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40:575–84.

    Article  CAS  PubMed  Google Scholar 

  36. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;17:1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science 2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  38. Ahmadi M, Amiri S, Pecic S, Machaj F, Rosik J, Łos MJ, et al. Pleiotropic effects of statins: a focus on cancer. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165968.

    Article  CAS  PubMed  Google Scholar 

  39. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM. Statins and cancer prevention. Nat Rev Cancer. 2005;5:930–42.

    Article  CAS  PubMed  Google Scholar 

  40. Weissenrieder JS, Reilly JE, Neighbors JD, Hohl RJ. Inhibiting geranylgeranyl diphosphate synthesis reduces nuclear androgen receptor signaling and neuroendocrine differentiation in prostate cancer cell models. Prostate. 2019;79:21–30.

    Article  CAS  PubMed  Google Scholar 

  41. Chang WC, Cheng WC, Cheng BH, Chen L, Ju LJ, Ou YJ, et al. Mitochondrial acetyl-CoA synthetase 3 is biosignature of gastric cancer progression. Cancer Med. 2018;7:1240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Swamy MV, Patlolla JM, Steele VE, Kopelovich L, Reddy BS, Rao CV, et al. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res. 2006;66:7370–7.

    Article  CAS  PubMed  Google Scholar 

  43. Teraoka N, Mutoh M, Takasu S, Ueno T, Yamamoto M, Sugimura T, et al. Inhibition of intestinal polyp formation by pitavastatin, a HMG-CoA reductase inhibitor. Cancer Prev Res (Philos). 2011;4:445–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our heartfelt gratitude to Professor Shuijie Li of Harbin Medical University for his guidance and invaluable advice on this work. Funding for this work was provided by grants from the National Natural Science Foundation of China (nos. U22A20330, 82173233, 82373372, and 82102858), the Key Project of Research and Development Plan in Heilongjiang Province (no. 2022ZX06C01, JD2023SJ40), the Natural Science Funding of Heilongjiang (no. YQ2022H017) and Haiyan Research Fund of Harbin Medical University Cancer Hospital (JJJQ2024-02).

Author information

Authors and Affiliations

Authors

Contributions

YYL, CL, and YQZ designed the study. YYL, RY, and BJW performed the experiments, and performed data analysis. YLR, LYC, JNY, XFY, YFY, MDS, XDL, and SLH performed the experiments and performed data analysis. YYL and YJL wrote the manuscript. SJL,CL and YQZ supervised the study and acquired the funding. All authors edited and revised the manuscript and were involved in the final approval of the manuscript.

Corresponding authors

Correspondence to Shuijie Li, Chao Liu or Yanqiao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Yang, R., Wang, B. et al. Mevalonate kinase inhibits anti-tumor immunity by impairing the tumor cell-intrinsic interferon response in microsatellite instability colorectal cancer. Oncogene 44, 944–957 (2025). https://doi.org/10.1038/s41388-024-03255-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03255-2

Search

Quick links