Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The splicing factor SRRM2 modulates two S6K kinases to promote colorectal cancer growth

Abstract

The mechanistic target of rapamycin (mTOR) pathway plays a critical role in cell growth and metabolic homeostasis. The ribosomal protein S6 kinases S6K1 and S6K2 are the major effectors of the mTOR pathway key to translation efficiency, but the underlying regulatory mechanisms remain largely unclear. In this study, we searched for mTOR regulators and found that the splicing factor SRRM2 modulates the levels of S6K1 and S6K2, thereby activating the mTOR-S6K pathway. Interestingly, SRRM2 facilitates the expression of S6K2 by modulating alternative splicing, and enhances the stability of the S6K1 protein by regulating the E3 ubiquitin ligase WWP2. Moreover, SRRM2 is highly expressed in colorectal cancer (CRC) tissues and is associated with a poor prognosis. SRRM2 promotes CRC growth in vitro and in vivo. Combined, these data reveal an oncogenic role of SRRM2 in CRC through activating the mTOR-S6K pathway by two different approaches, further suggesting SRRM2 as a potential therapeutic target for CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SRRM2 activates the mTOR-S6K signaling pathway.
Fig. 2: SRRM2 regulates S6K2 splicing.
Fig. 3: SRRM2 enhances S6K1 levels through inhibiting the E3 ligase WWP2.
Fig. 4: WWP2 regulates S6K1 turnover via the ubiquitin-proteasome system.
Fig. 5: SRRM2 promotes colorectal cancer cell growth.
Fig. 6: SRRM2 promotes colorectal tumor growth in vivo.
Fig. 7: SRRM2 promotes colorectal cancer cell growth through the activation of the mTOR-S6K pathway.
Fig. 8: SRRM2 is highly expressed in human CRC and predicts a poor clinical outcome.

Similar content being viewed by others

Data availability

The colon cancer patient databases used in this study are available and obtained from UALCAN database and Kaplan-Meier Plotter database. The RNA-seq dataset analyzed in this study is available in the SRA database: no. PRJNA1144892. Additional resources and data related to this article can be found in supplementary information or requested from the corresponding authors.

References

  1. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169:361–71.

    Article  CAS  PubMed  Google Scholar 

  2. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253:905–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73:585–96.

    Article  CAS  PubMed  Google Scholar 

  4. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369:756–8.

    Article  CAS  PubMed  Google Scholar 

  5. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szwed A, Kim E, Jacinto E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev. 2021;101:1371–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123:569–80.

    Article  CAS  PubMed  Google Scholar 

  8. Tavares MR, Pavan IC, Amaral CL, Meneguello L, Luchessi AD, Simabuco FM. The S6K protein family in health and disease. Life Sci. 2015;131:1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:71.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92–111.

    Article  CAS  PubMed  Google Scholar 

  11. Maruani DM, Spiegel TN, Harris EN, Shachter AS, Unger HA, Herrero-Gonzalez S, et al. Estrogenic regulation of S6K1 expression creates a positive regulatory loop in control of breast cancer cell proliferation. Oncogene. 2012;31:5073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang Y, Jiang L, Zhao X, Hu D, Zhao G, Luo S, et al. FOXO1 inhibits prostate cancer cell proliferation via suppressing E2F1 activated NPRL2 expression. Cell Biol Int. 2021;45:2510–20.

    Article  CAS  PubMed  Google Scholar 

  13. Song J, Richard S. Sam68 Regulates S6K1 Alternative Splicing during Adipogenesis. Mol Cell Biol. 2015;35:1926–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu T, Li X, Zhao W, Wang X, Jin L, Feng Z, et al. SF3B3-regulated mTOR alternative splicing promotes colorectal cancer progression and metastasis. J Exp Clin Cancer Res. 2024;43:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fransson S, Uv A, Eriksson H, Andersson MK, Wettergren Y, Bergo M, et al. p37delta is a new isoform of PI3K p110delta that increases cell proliferation and is overexpressed in tumors. Oncogene. 2012;31:3277–86.

    Article  CAS  PubMed  Google Scholar 

  16. Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Ou Y, Yang Y, Li W, Xu Y, Xie Y, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature. 2018;557:585–9.

    Article  CAS  PubMed  Google Scholar 

  18. Wang D, Xu C, Yang W, Chen J, Ou Y, Guan Y, et al. E3 ligase RNF167 and deubiquitinase STAMBPL1 modulate mTOR and cancer progression. Mol Cell. 2022;82:770–784.e779.

    Article  CAS  PubMed  Google Scholar 

  19. Xu S, Lai SK, Sim DY, Ang WSL, Li HY, Roca X. SRRM2 organizes splicing condensates to regulate alternative splicing. Nucleic Acids Res. 2022;50:8599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McMillan PJ, Strovas TJ, Baum M, Mitchell BK, Eck RJ, Hendricks N, et al. Pathological tau drives ectopic nuclear speckle scaffold protein SRRM2 accumulation in neuron cytoplasm in Alzheimer’s disease. Acta Neuropathol Commun. 2021;9:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lester E, Ooi FK, Bakkar N, Ayers J, Woerman AL, Wheeler J, et al. Tau aggregates are RNA-protein assemblies that mislocalize multiple nuclear speckle components. Neuron. 2021;109:1675–1691.e1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cuinat S, Nizon M, Isidor B, Stegmann A, van Jaarsveld RH, van Gassen KL, et al. Loss-of-function variants in SRRM2 cause a neurodevelopmental disorder. Genet Med. 2022;24:1774–80.

    Article  CAS  PubMed  Google Scholar 

  23. Hu G, Rios L, Yan Z, Jasper AM, Luera D, Luo S, et al. Autophagy regulator Atg9 is degraded by the proteasome. Biochem Biophys Res Commun. 2020;522:254–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 2005;19:2816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertram PG, Zeng C, Thorson J, Shaw AS, Zheng XF. The 14-3-3 proteins positively regulate rapamycin-sensitive signaling. Curr Biol. 1998;8:1259–67.

    Article  CAS  PubMed  Google Scholar 

  26. Hood-DeGrenier JK. Identification of phosphatase 2A-like Sit4-mediated signalling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast. 2011;28:189–204.

    Article  CAS  PubMed  Google Scholar 

  27. Read RD, Fenton TR, Gomez GG, Wykosky J, Vandenberg SR, Babic I, et al. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genet. 2013;9:e1003253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 1999;13:3271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee K, Hahn JS. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae. Mol Microbiol. 2013;88:1120–34.

    Article  CAS  PubMed  Google Scholar 

  30. Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene. 2006;25:6436–46.

    Article  CAS  PubMed  Google Scholar 

  31. Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther. 2023;8:375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ule J, Blencowe BJ. Alternative Splicing Regulatory Networks: Functions, Mechanisms, and Evolution. Mol Cell. 2019;76:329–45.

    Article  CAS  PubMed  Google Scholar 

  33. Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther. 2024;9:26.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, et al. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat. 2020;53:100728.

    Article  PubMed  Google Scholar 

  35. Lester E, Van Alstyne M, McCann KL, Reddy S, Cheng LY, Kuo J, et al. Cytosolic condensates rich in polyserine define subcellular sites of tau aggregation. Proc Natl Acad Sci USA. 2023;120:e2217759120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14:185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu X, Xie W, Wei W, Guo J. Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis. 2022;13:646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mo H, Liu X, Xue Y, Chen H, Guo S, Li Z, et al. S6K1 amplification confers innate resistance to CDK4/6 inhibitors through activating c-Myc pathway in patients with estrogen receptor-positive breast cancer. Mol Cancer. 2022;21:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perez-Tenorio G, Karlsson E, Waltersson MA, Olsson B, Holmlund B, Nordenskjold B, et al. Clinical potential of the mTOR targets S6K1 and S6K2 in breast cancer. Breast Cancer Res Treat. 2011;128:713–23.

    Article  CAS  PubMed  Google Scholar 

  40. Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71:2590–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sridharan S, Basu A. Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. Int J Mol Sci. 2020;21:1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshida S, Matsumoto K, Arao T, Taniguchi H, Goto I, Hanafusa T, et al. Gene amplification of ribosomal protein S6 kinase-1 and -2 in gastric cancer. Anticancer Res. 2013;33:469–75.

    CAS  PubMed  Google Scholar 

  43. Lee-Fruman KK, Kuo CJ, Lippincott J, Terada N, Blenis J. Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene. 1999;18:5108–14.

    Article  CAS  PubMed  Google Scholar 

  44. Duan T, Zhou D, Yao Y, Shao X. The Association of Aberrant Expression of FGF1 and mTOR-S6K1 in Colorectal Cancer. Front Oncol 2021;11:706838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng Z, Shao X, Xu M, Wang J, Kuai X, Zhang L, et al. Rab1A promotes proliferation and migration abilities via regulation of the HER2/AKT-independent mTOR/S6K1 pathway in colorectal cancer. Oncol Rep. 2019;41:2717–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grasso S, Tristante E, Saceda M, Carbonell P, Mayor-Lopez L, Carballo-Santana M, et al. Resistance to Selumetinib (AZD6244) in colorectal cancer cell lines is mediated by p70S6K and RPS6 activation. Neoplasia. 2014;16:845–60.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sun Y, Luo M, Chang G, Ren W, Wu K, Li X, et al. Phosphorylation of Ser6 in hnRNPA1 by S6K2 regulates glucose metabolism and cell growth in colorectal cancer. Oncol Lett 2017;14:7323–31.

    PubMed  PubMed Central  Google Scholar 

  48. Cho S, Chun Y, He L, Ramirez CB, Ganesh KS, Jeong K, et al. FAM120A couples SREBP-dependent transcription and splicing of lipogenesis enzymes downstream of mTORC1. Mol Cell. 2023;83:3010–3026.e3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ben-Hur V, Denichenko P, Siegfried Z, Maimon A, Krainer A, Davidson B, et al. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep. 2013;3:103–15.

    Article  CAS  PubMed  Google Scholar 

  50. Gautam A, Grainger RJ, Vilardell J, Barrass JD, Beggs JD. Cwc21p promotes the second step conformation of the spliceosome and modulates 3’ splice site selection. Nucleic Acids Res. 2015;43:3309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gupta SK, Carmi S, Waldman Ben-Asher H, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem 2013;288:4991–5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell. 2011;44:304–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gwalter J, Wang ML, Gout I. The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase. Int J Biochem Cell Biol 2009;41:828–33.

    Article  CAS  PubMed  Google Scholar 

  54. Panasyuk G, Nemazanyy I, Filonenko V, Gout I. Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1. Biochem Biophys Res Commun 2008;369:339–43.

    Article  CAS  PubMed  Google Scholar 

  55. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian T, Li X, Zhang J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci. 2019;20:755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaytseva YY, Valentino JD, Gulhati P, Evers BM. mTOR inhibitors in cancer therapy. Cancer Lett. 2012;319:1–7.

    Article  CAS  PubMed  Google Scholar 

  58. Carew JS, Kelly KR, Nawrocki ST. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol. 2011;6:17–27.

    Article  PubMed  Google Scholar 

  59. Yan Z, Cheng M, Hu G, Wang Y, Zeng S, Huang A, et al. Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death Dis. 2021;12:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Rao laboratory and Drs. H. Hu, F. Rao for discussion. This study was supported by the National Key Research and Development Program (2021YFA0909300), National Natural Science Foundation of China (82170159), Shenzhen Fundamental Research Program (JCYJ20220818100412028), Key Talent Program of Guangdong (2021CX02Y084), High level of special funds (G03050K003), Medical Research Innovation Project (G030410001), China Postdoctoral Science Foundation (2022M721479).

Author information

Authors and Affiliations

Authors

Contributions

ZY and HR designed experiments. ZY and LH performed most of the experiments and analyzed data with HR. CD, JY, and YN performed some of the experiments. SS analyzed thE RNA-Seq data. HR, SL, ZY and LH drafted the manuscript. All authors reviewed and approved the final draft.

Corresponding author

Correspondence to Hai Rao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal study was reviewed and approved by the laboratory animal ethics committe of SUSTech (SUSTech-SL2023072404). All animal procedures were performed in accordance with the guidelines for care and use of laboratory animals of Southern University of Science and Technology.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., He, L., Yuan, J. et al. The splicing factor SRRM2 modulates two S6K kinases to promote colorectal cancer growth. Oncogene 44, 1284–1299 (2025). https://doi.org/10.1038/s41388-025-03307-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03307-1

Search

Quick links