Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RBM39 promotes hepatocarcinogenesis by regulating RFX1’s alternative splicing and subsequent activation of integrin signaling pathway

Abstract

Alternative splicing (AS) is crucial for tumor cells as it regulates protein expression and produces various protein isoforms, which can have diverse or even opposing roles in tumor growth and metastasis. Despite its significance, the role of AS and related splicing factors, particularly splicing-related messenger ribonucleoproteins (mRNPs), in hepatocarcinogenesis, is poorly understood. High-throughput transcriptome sequencing of HCC patients revealed that the spliceosome pathway might play a significant role in HCC development. Through the combined analysis of the three gene clusters, the splicing factor RBM39 was identified, which was highly expressed in HCC tumor tissues with prognostic value. Functional studies showed that silencing RBM39 inhibited cell proliferation, migration, and invasion via the integrin pathway. By performing RNA immunoprecipitation sequencing (RIP-seq), we found that RBM39 combined to RFX1 pre-mRNA and regulated alternative splicing of exon 2. Mechanistically, the exon 2 skipping in RFX1, influenced by high RBM39 expression in HCC cells, led to the production of an N-terminal truncated RFX1, which lost the transcriptional repression ability on oncogenic collagen genes. High RBM39 expression enhances the malignant capabilities of HCC cells by regulating the alternative splicing of RFX1 and subsequently activating the FAK/PI3K/AKT signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spliceosome pathway is enriched in HCC and RBM39 is positively correlated with poor HCC prognosis.
Fig. 2: Knockdown of RBM39 inhibits proliferation and metastasis in HCC cells.
Fig. 3: Knockdown of RBM39 alters the expression of collagen and integrin genes that influence the FAK/PI3K/AKT signaling pathway.
Fig. 4: RBM39 interacts with RFX1 and regulates the alternative splicing of RFX1.
Fig. 5: Effects of RFX1-s and RFX1-FL isoforms on proliferation, migration and invasion of HCC cells.
Fig. 6: Reduction the proportion of RFX1-FL “rescues” the malignancy capacity of HCC cells with low RBM39 expression.
Fig. 7: Knockdown of RBM39 suppresses HCC progression in mouse models.
Fig. 8: Differences in gene and protein expression in HCC patients with low and high RBM39 expression.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Materials. The data underlying this article are available in the Gene Expression Omnibus, and can be accessed under accession codes GSE275347 and GSE275496.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Rahman MA, Krainer AR, Abdel-Wahab O. SnapShot: splicing alterations in cancer. Cell. 2020;180:208–e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bradley RK, Anczuków O. RNA splicing dysregulation and the hallmarks of cancer. Nat Rev Cancer. 2023;23:135–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol. 2020;17:457–74.

    Article  PubMed  Google Scholar 

  5. Wang E, Lu SX, Pastore A, Chen X, Imig J, Chun-Wei Lee S, et al. Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer cell. 2019;35:369–84.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Corsini L, Bonnal S, Basquin J, Hothorn M, Scheffzek K, Valcárcel J, et al. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat Struct Mol Biol. 2007;14:620–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wan L, Yu W, Shen E, Sun W, Liu Y, Kong J, et al. SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer. Gut. 2019;68:118–29.

    Article  CAS  PubMed  Google Scholar 

  8. Jbara A, Lin KT, Stossel C, Siegfried Z, Shqerat H, Amar-Schwartz A, et al. RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer. Nature. 2023;617:147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang JZ, Fu X, Fang Z, Liu H, Zong FY, Zhu H, et al. QKI-5 regulates the alternative splicing of cytoskeletal gene ADD3 in lung cancer. J Mol cell Biol. 2021;13:347–60.

    Article  CAS  PubMed  Google Scholar 

  10. Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Investig. 2011;121:1064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, et al. RNA-binding proteins in tumor progression. J Hematol Oncol. 2020;13:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15:829–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, et al. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updates: Rev Comment Antimicrob Anticancer Chemother. 2020;53:100728.

    Article  Google Scholar 

  14. Xiao Y, Cai GP, Feng X, Li YJ, Guo WH, Guo Q, et al. Splicing factor YBX1 regulates bone marrow stromal cell fate during aging. EMBO J. 2023;42:e111762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weber AI, Parthasarathy S, Borisova E, Epifanova E, Preußner M, Rusanova A, et al. Srsf1 and Elavl1 act antagonistically on neuronal fate choice in the developing neocortex by controlling TrkC receptor isoform expression. Nucleic acids Res. 2023;51:10218–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baejen C, Torkler P, Gressel S, Essig K, Söding J, Cramer P. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol cell. 2014;55:745–57.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Zheng Y, Xiao M, Chen X, Zhu Y, Xu C, et al. SRSF10 stabilizes CDC25A by triggering exon 6 skipping to promote hepatocarcinogenesis. J Exp Clin Cancer Res. 2022;41:353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo C, Cheng Y, Liu Y, Chen L, Liu L, Wei N, et al. SRSF2 regulates alternative splicing to drive hepatocellular carcinoma development. Cancer Res. 2017;77:1168–78.

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y, Wang J, Zhao T, Sun M, Xu M, Che S, et al. Polystyrenenanoplastics lead to ferroptosis in the lungs. J Adv Res. 2024;56:31–41.

    Article  CAS  PubMed  Google Scholar 

  20. Dowhan DH, Hong EP, Auboeuf D, Dennis AP, Wilson MM, Berget SM, et al. Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta. Mol cell. 2005;17:429–39.

    Article  CAS  PubMed  Google Scholar 

  21. Tari M, Manceau V, de Matha Salone J, Kobayashi A, Pastré D, Maucuer A. U2AF(65) assemblies drive sequence-specific splice site recognition. EMBO Rep. 2019;20:e47604.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Han T, Goralski M, Gaskill N, Capota E, Kim J, Ting TC, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science (New York, NY). 2017; 356.

  23. Mai S, Qu X, Li P, Ma Q, Cao C, Liu X. Global regulation of alternative RNA splicing by the SR-rich protein RBM39. Biochimica et Biophys acta. 2016;1859:1014–24.

    Article  CAS  Google Scholar 

  24. Mossmann D, Müller C, Park S, Ryback B, Colombi M, Ritter N, et al. Arginine reprograms metabolism in liver cancer via RBM39. Cell. 2023;186:5068–83.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang YK, Putluri N, Maity S, Tsimelzon A, Ilkayeva O, Mo Q, et al. CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-α-Gabpa and stress-induced adaptive responses via NF-κB-cMYC. PLoS Genet. 2015;11:e1005116.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yokoi A, Kuromitsu J, Kawai T, Nagasu T, Sugi NH, Yoshimatsu K, et al. Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol Cancer Ther. 2002;1:275–86.

    CAS  PubMed  Google Scholar 

  27. Huang G, Zhou Z, Wang H, Kleinerman ES. CAPER-α alternative splicing regulates the expression of vascular endothelial growth factor165 in Ewing sarcoma cells. Cancer. 2012;118:2106–16.

    Article  CAS  PubMed  Google Scholar 

  28. Lu SX, De Neef E, Thomas JD, Sabio E, Rousseau B, Gigoux M, et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell. 2021;184:4032–47.e31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Nijhuis A, Keun HC. RNA-binding motif protein 39 (RBM39): An emerging cancer target. Br J Pharmacol. 2022;179:2795–812.

    Article  CAS  PubMed  Google Scholar 

  30. Subramanian P, Gargani S, Palladini A, Chatzimike M, Grzybek M, Peitzsch M, et al. The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology. 2022;75:881–97.

    Article  CAS  PubMed  Google Scholar 

  31. Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, et al. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of β-catenin in HCC cells. Gastroenterology. 2015;148:415–26.e18.

    Article  CAS  PubMed  Google Scholar 

  32. Lin Y, Liang R, Qiu Y, Lv Y, Zhang J, Qin G, et al. Expression and gene regulation network of RBM8A in hepatocellular carcinoma based on data mining. Aging. 2019;11:423–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chamberlain PP, Hamann LG. Development of targeted protein degradation therapeutics. Nat Chem Biol. 2019;15:937–44.

    Article  CAS  PubMed  Google Scholar 

  34. Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int. 2021;21:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu P, Ge M, Hu J, Li X, Che L, Sun K, et al. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology. 2017;66:167–81.

    Article  CAS  PubMed  Google Scholar 

  36. Lee SE, Alcedo KP, Kim HJ, Snider NT. Alternative splicing in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2020;10:699–712.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yu L, Kim J, Jiang L, Feng B, Ying Y, Ji KY, et al. MTR4 drives liver tumorigenesis by promoting cancer metabolic switch through alternative splicing. Nat Commun. 2020;11:708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou HZ, Li F, Cheng ST, Xu Y, Deng HJ, Gu DY, et al. DDX17-regulated alternative splicing that produced an oncogenic isoform of PXN-AS1 to promote HCC metastasis. Hepatology. 2022;75:847–65.

    Article  CAS  PubMed  Google Scholar 

  39. Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, et al. PUF60-activated exons uncover altered 3’ splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res. 2018;46:6166–87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Desert R, Chen W, Ge X, Viel R, Han H, Athavale D, et al. Hepatocellular carcinomas, exhibiting intratumor fibrosis, express cancer-specific extracellular matrix remodeling and WNT/TGFB signatures, associated with poor outcome. Hepatology. 2023;78:741–57.

    Article  PubMed  Google Scholar 

  41. Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell. 2022;40:818–34.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat Cancer. 2022;3:90–107.

    Article  PubMed  Google Scholar 

  43. Omar R, Cooper A, Maranyane HM, Zerbini L, Prince S. COL1A2 is a TBX3 target that mediates its impact on fibrosarcoma and chondrosarcoma cell migration. Cancer Lett. 2019;459:227–39.

    Article  CAS  PubMed  Google Scholar 

  44. Wu X, Cai J, Zuo Z, Li J. Collagen facilitates the colorectal cancer stemness and metastasis through an integrin/PI3K/AKT/Snail signaling pathway. Biomed Pharmacother. 2019;114:108708.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Gao Y, Zhao X, Guo C, Wang X, Yang Y, et al. HOXD3 was negatively regulated by YY1 recruiting HDAC1 to suppress progression of hepatocellular carcinoma cells via ITGA2 pathway. Cell Prolif. 2020;53:e12835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kubow KE, Vukmirovic R, Zhe L, Klotzsch E, Smith ML, Gourdon D, et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun. 2015;6:8026.

    Article  CAS  PubMed  Google Scholar 

  48. Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther. 2023;8:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li M, Wang Y, Li M, Wu X, Setrerrahmane S, Xu H. Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B. 2021;11:2726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang KR, Nemoto T, Yokota Y. RFX1 mediates the serum-induced immediate early response of Id2 gene expression. J Biol Chem. 2007;282:26167–77.

    Article  CAS  PubMed  Google Scholar 

  51. Jia W, Liang S, Lin W, Li S, Yuan J, Jin M, et al. Hypoxia-induced exosomes facilitate lung pre-metastatic niche formation in hepatocellular carcinoma through the miR-4508-RFX1-IL17A-p38 MAPK-NF-κB pathway. Int J Biol Sci. 2023;19:4744–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Jiang P, Wang G, Liu X, Luo S. Downregulation of RFX1 predicts poor prognosis of patients with small hepatocellular carcinoma. Eur J Surg Oncol. 2018;44:1087–93.

    Article  PubMed  Google Scholar 

  53. Sengupta P, Xu Y, Wang L, Widom R, Smith BD. Collagen alpha1(I) gene (COL1A1) is repressed by RFX family. J Biol Chem. 2005;280:21004–14.

    Article  CAS  PubMed  Google Scholar 

  54. Reith W, Herrero-Sanchez C, Kobr M, Silacci P, Berte C, Barras E, et al. MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. Genes Dev. 1990;4:1528–40.

    Article  CAS  PubMed  Google Scholar 

  55. Du P, Gao K, Cao Y, Yang S, Wang Y, Guo R, et al. RFX1 downregulation contributes to TLR4 overexpression in CD14(+) monocytes via epigenetic mechanisms in coronary artery disease. Clin Epigenet. 2019;11:44.

    Article  Google Scholar 

  56. Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, et al. IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun. 2018;9:583.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, et al. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci USA. 2007;104:14771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen X, Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol. 2014;184:912–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou Y, Chen Y, Zhang X, Xu Q, Wu Z, Cao X, et al. Brahma-Related Gene 1 Inhibition Prevents Liver Fibrosis and Cholangiocarcinoma by Attenuating Progenitor Expansion. Hepatology. 2021;74:797–815.

    Article  CAS  PubMed  Google Scholar 

  60. Sebaugh JL. Guidelines for accurate EC50/IC50 estimation. Pharm Stat. 2011;10:128–34.

    Article  CAS  PubMed  Google Scholar 

  61. Rio DC. Electrophoretic mobility shift assays for RNA-protein complexes. Cold Spring Harb Protoc. 2014;2014:435–40.

    Article  PubMed  Google Scholar 

  62. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179:1240.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2023YFC2505900 & 2022YFC2304705), the Natural Science Foundation of China (82173255, 82273330, 82270691), 1.3.5 project for disciplines of excellence from West China Hospital of Sichuan University (No. ZYGD24002), the Key R&D projects of Sichuan Provincial Department of Science and Technology (23ZDYF2182, 23ZDYF2083). We thank http://www.bioinformatics.com.cn/ for plotting part of pictures. We acknowledge the support provided by LC-Bio Technologies (Hangzhou) Co., Ltd. with the RNA sequencing and data analysis. We acknowledge the support provided by SEQHEALTH (Wuhan) Co., Ltd. with the RIP sequencing and data analysis.

Author information

Authors and Affiliations

Contributions

B.Z., X.X., Q.W.Z., and Z.R.W.: performed the experiments and generated data. B.Z., X.X., Y.J.Z., and J.Y.Y.: analyzed the data. B.Z., Y.J.Z., G.X., T.L., and J.Y.Y.: designed the experiments. B.Z. and Y.J.Z.: wrote the manuscript. G.X., Q.W., T.L., and J.Y.: provided clinical samples. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yongjie Zhou, Tao Lv or Jiayin Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The authors confirm that all methods were performed in accordance with the relevant guidelines and regulations. All animal experiments were approved by the Experimental Animal Care Committee of West China Hospital of Sichuan University (approval number: 20230228051). The use of patient specimens and the relevant database were approved by the Research Ethics Committee of West China Hospital of Sichuan University (approval number: 2020-166).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhou, Y., Xu, X. et al. RBM39 promotes hepatocarcinogenesis by regulating RFX1’s alternative splicing and subsequent activation of integrin signaling pathway. Oncogene 44, 1488–1503 (2025). https://doi.org/10.1038/s41388-025-03327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03327-x

Search

Quick links