Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RBMS3-loss impedes TRIM21-induced ubiquitination of ANGPT2 in an RNA-independent manner and drives sorafenib resistance in hepatocellular carcinoma

Abstract

Sorafenib, a first-line targeted drug for advanced hepatocellular carcinoma (HCC), has limited clinical application due to intrinsic/acquired resistance. In this study, we have identified the RNA-binding protein RBMS3 as a pivotal regulator involved in sorafenib resistance among patients with HCC. Loss- and gain-of-function experiments further demonstrate that downregulation of RBMS3 promotes angiogenesis and confers resistance to sorafenib by augmenting the capacity of HCC cells to express and secrete ANGPT2, while upregulation of RBMS3 reverse these phenotypes.Through immunoprecipitation mass spectrometry experiments and co-immunoprecipitation (co-IP), we further verified that RBMS3 can facilitate the K48-linked ubiquitination and subsequent protein degradation of ANGPT2 by recruiting the ubiquitin E3 ligase TRIM21 in an RNA-independent manner.Additionally, RBMS3 is found to be deleted in HCC tissues and exhibits a significant positive correlation with angiogenesis and resistance to sorafenib treatment. Importantly, the combination of ANGPT2 antibody in RBMS3-deficient HCC cells restores sensitivity to sorafenib both in vitro and in vivo. These findings uncovered a novel molecular basis for post-translational upregulation of ANGPT2, suggesting that RBMS3-loss plays an oncogenic role in HCC by promoting angiogenesis and conferring resistance to sorafenib treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RBMS3 is downregulated in HCC and correlated with sorafenib resistance.
Fig. 2: RBMS3 inhibits the angiogenesis capacity of HCC cells treated with sorafenib in vitro.
Fig. 3: RBMS3 modulates microvascular density and sorafenib sensitivity of HCC cells in vivo.
Fig. 4: RBMS3 modulates sorafenib sensitivity in HCC via suppressing ANGPT2.
Fig. 5: Ubiquitinating E3 ligase TRIM21 is essential for RBMS3-regulating ANGPT2 expression and angiogenesis in HCC.
Fig. 6: RBMS3 induced protein degradation of ANGPT2 through Lys-48-linked polyubiquitination by TRIM21.
Fig. 7: Anti-ANGPT2 sensitized RBMS3-loss HCC cells to sorafenib treatment.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clinicians. 2005;55:74–108.

    Article  Google Scholar 

  3. Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int. 2015;35:2155–66.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380:1450–62.

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  6. Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69:223–40.

    Article  CAS  PubMed  Google Scholar 

  7. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–44.

    Article  CAS  PubMed  Google Scholar 

  8. Palmer DH. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:2498.

    CAS  PubMed  Google Scholar 

  9. Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5:87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sia D, Alsinet C, Newell P, Villanueva A. VEGF signaling in cancer treatment. Curr Pharm Des. 2014;20:2834–42.

    Article  CAS  PubMed  Google Scholar 

  11. Scartozzi M, Faloppi L, Svegliati Baroni G, Loretelli C, Piscaglia F, Iavarone M, et al. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study. Int J Cancer. 2014;135:1247–56.

    Article  CAS  PubMed  Google Scholar 

  12. Luo X, Feng GS. VEGFA genomic amplification tailors treatment of HCCs with sorafenib. Cancer Discov. 2014;4:640–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreno Garcia V, Basu B, Molife LR, Kaye SB. Combining antiangiogenics to overcome resistance: rationale and clinical experience. Clin Cancer Res. 2012;18:3750–61.

    Article  CAS  PubMed  Google Scholar 

  14. Morse MA, Sun W, Kim R, He AR, Abada PB, Mynderse M, et al. The Role of Angiogenesis in Hepatocellular Carcinoma. Clin Cancer Res. 2019;25:912–20.

    Article  CAS  PubMed  Google Scholar 

  15. Goh PP, Sze DM, Roufogalis BD. Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets. 2007;7:743–58.

    Article  CAS  PubMed  Google Scholar 

  16. Huang H, Lai JY, Do J, Liu D, Li L, Del Rosario J, et al. Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth. Clin Cancer Res. 2011;17:1001–11.

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Bhat A, Woodnutt G, Lappe R. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 2010;10:575–85.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Moundhri MS, Al-Shukaili A, Al-Nabhani M, Al-Bahrani B, Burney IA, Rizivi A, et al. Measurement of circulating levels of VEGF-A, -C, and -D and their receptors, VEGFR-1 and -2 in gastric adenocarcinoma. World J Gastroenterol. 2008;14:3879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsai JH, Lee WM. Tie2 in tumor endothelial signaling and survival: implications for antiangiogenic therapy. Mol Cancer Res. 2009;7:300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kashikar R, Kotha AK, Shah S, Famta P, Singh SB, Srivastava S, et al. Advances in nanoparticle mediated targeting of RNA binding protein for cancer. Adv Drug Deliv Rev. 2022;185:114257.

    Article  CAS  PubMed  Google Scholar 

  22. Wu X, Xu L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev. 2022;184:114179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8:533–43.

    Article  CAS  PubMed  Google Scholar 

  24. Penkov D, Ni R, Else C, Pinol-Roma S, Ramirez F, Tanaka S. Cloning of a human gene closely related to the genes coding for the c-myc single-strand binding proteins. Gene. 2000;243:27–36.

    Article  CAS  PubMed  Google Scholar 

  25. Ruan X, Liu Y, Wang P, Liu L, Ma T, Xue Y, et al. RBMS3-induced circHECTD1 encoded a novel protein to suppress the vasculogenic mimicry formation in glioblastoma multiforme. Cell Death Dis. 2023;14:745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vaishnavi A, Juan J, Jacob M, Stehn C, Gardner EE, Scherzer MT, et al. Transposon Mutagenesis Reveals RBMS3 Silencing as a Promoter of Malignant Progression of BRAFV600E-Driven Lung Tumorigenesis. Cancer Res. 2022;82:4261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gornicki T, Lambrinow J, Mrozowska M, Podhorska-Okolow M, Dziegiel P, Grzegrzolka J. Role of RBMS3 Novel Potential Regulator of the EMT Phenomenon in Physiological and Pathological Processes. Int J Mol Sci. 2022;23:10875.

  28. Zhu L, Xi PW, Li XX, Sun X, Zhou WB, Xia TS, et al. The RNA binding protein RBMS3 inhibits the metastasis of breast cancer by regulating Twist1 expression. J Exp Clin Cancer Res. 2019;38:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Chen L, Nie CJ, Zeng TT, Liu H, Mao X, et al. Downregulation of RBMS3 is associated with poor prognosis in esophageal squamous cell carcinoma. Cancer Res. 2011;71:6106–15.

    Article  CAS  PubMed  Google Scholar 

  30. Wu G, Cao L, Zhu J, Tan Z, Tang M, Li Z, et al. Loss of RBMS3 Confers Platinum Resistance in Epithelial Ovarian Cancer via Activation of miR-126-5p/beta-catenin/CBP signaling. Clin Cancer Res. 2019;25:1022–35.

    Article  CAS  PubMed  Google Scholar 

  31. Gyorffy B. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors. Innovation. 2024;5:100625.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, et al. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 2019;9:1001–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat Rev Cancer. 2024;24:655–75.

    Article  CAS  PubMed  Google Scholar 

  34. Ladd AD, Duarte S, Sahin I, Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology. 2024;79:926–40.

    PubMed  Google Scholar 

  35. Hu C, Li W, Tian F, Jiang K, Liu X, Cen J, et al. Arid1a regulates response to anti-angiogenic therapy in advanced hepatocellular carcinoma. J Hepatol. 2018;68:465–75.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu J, Wu Y, Yu Y, Li Y, Shen J, Zhang R. MYBL1 induces transcriptional activation of ANGPT2 to promote tumor angiogenesis and confer sorafenib resistance in human hepatocellular carcinoma. Cell Death Dis. 2022;13:727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Urosevic J, Blasco MT, Llorente A, Bellmunt A, Berenguer-Llergo A, Guiu M, et al. ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer. Cancer Res. 2020;80:4668–80.

    Article  CAS  PubMed  Google Scholar 

  38. Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, et al. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res. 2023;83:1968–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alomari M. TRIM21 - A potential novel therapeutic target in cancer. Pharm Res. 2021;165:105443.

    Article  CAS  Google Scholar 

  40. Chen X, Cao M, Wang P, Chu S, Li M, Hou P, et al. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol. 2022;13:968755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu YX, Wan S, Yang XQ, Wang Y, Gan WJ, Ye WL, et al. TRIM21 is a druggable target for the treatment of metastatic colorectal cancer through ubiquitination and activation of MST2. Cell Chem Biol. 2023;30:709–25.e6.

    Article  CAS  PubMed  Google Scholar 

  42. Wan S, He QY, Yang Y, Liu F, Zhang X, Guo X, et al. SPARC Stabilizes ApoE to Induce Cholesterol-Dependent Invasion and Sorafenib Resistance in Hepatocellular Carcinoma. Cancer Res. 2024;84:1872–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.82103637, 82303401), Guangzhou Municipal Science and Technology Project (2024A04J3475, 2025A03J3756), Joint provincial and municipal fund in Guangdong Province (2022A1515111204) and Discipline Excellence Program of Guangdong Pharmaceutical University (2024QZ06).

Author information

Authors and Affiliations

Authors

Contributions

J. Zhu, G. Wu and S. Zhang supervise the project, review and editing the manuscript. S. Ou and X. Nie performed all the in vitro experiments. L. Wang conducted the molecular cloning. J. Zhu and L. Wang performed IHC assay. J. Shen provided patient tissue samples and analyzed clinical data. J. Zhu and X. Nie performed in vivo experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shuxia Zhang or Geyan Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, L., Nie, X. et al. RBMS3-loss impedes TRIM21-induced ubiquitination of ANGPT2 in an RNA-independent manner and drives sorafenib resistance in hepatocellular carcinoma. Oncogene 44, 1620–1633 (2025). https://doi.org/10.1038/s41388-025-03335-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03335-x

Search

Quick links