Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fibroblast Activation Protein (FAP)+ cancer-associated fibroblasts induce macrophage M2-like polarization via the Fibronectin 1-Integrin α5β1 axis in breast cancer

Abstract

Cancer-associated fibroblasts expressing fibroblast activation protein (FAP+ CAFs) are critical modulators of the breast cancer microenvironment, yet their immunoregulatory mechanisms remain poorly understood. Through integrated analysis of single-cell RNA sequencing data, clinical specimens, and in vivo and in vitro experiments, we identified FAP+ CAFs as the predominant stromal population associated with poor clinical outcomes and immunosuppressive features. Mechanistically, FAP+ CAFs secrete high levels of fibronectin 1 (FN1), which engages integrin α5β1 on macrophages to trigger FAK-AKT-STAT3 signaling, driving their polarization toward an immunosuppressive M2-like phenotype. Importantly, pharmacological disruption of FN1-integrin α5β1 signaling using Cilengitide effectively reprogrammed the tumor immune landscape and suppressed tumor growth in mice models. These findings establish FAP+ CAF-derived FN1 as a critical orchestrator of tumor immunosuppression and identify the FN1-integrin α5β1 axis as a promising therapeutic target in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics and implications of FAP+ CAFs in breast cancer microenvironment.
Fig. 2: Association of high FN1 expression with an immunosuppressive microenvironment in breast cancer.
Fig. 3: FAP+ CAFs promote macrophage M2-like polarization and suppress T cell responses.
Fig. 4: FN1 induced macrophage M2-like polarization through integrin α5β1 signaling.
Fig. 5: Integrin α5β1 blockade reverses FN1-induced immunosuppressive macrophage phenotype and function.
Fig. 6: FN1 promotes macrophage M2-like polarization through the FAK-AKT-STAT3 signaling cascade.
Fig. 7: FN1 and Cilengitide competitively regulate tumor growth and macrophage polarization through integrin α5β1.
Fig. 8: Spatial characterization of FN1-modulated tumor immune microenvironment.

Similar content being viewed by others

Data availability

The single-cell RNA sequencing data have been deposited in the GSA-Human repository (https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003664). The processed data and analysis results are available within the article and its supplementary files. Other raw data supporting this study are available in the figshare repository (DOI: 10.6084/m9.figshare.26648908). Additional data of this study are also available from the corresponding authors upon reasonable request.

References

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49.

    Article  PubMed  Google Scholar 

  2. Waks AG, Winer EP. Breast cancer treatment. JAMA. 2019;321:316.

    Article  PubMed  Google Scholar 

  3. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  4. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346–54.

    Article  CAS  PubMed  Google Scholar 

  5. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartoschek M, Oskolkov N, Bocci M, Lovrot J, Larsson C, Sommarin M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9:5150.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, et al. Cancer-associated fibroblasts in breast cancer: challenges and opportunities. Cancer Commun. 2022;42:401–34.

    Article  Google Scholar 

  8. Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10:1330–51.

    Article  CAS  PubMed  Google Scholar 

  9. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37:38–44.

  11. Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun. 2022;13:1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun D, Guan X, Moran AE, Wu LY, Qian DZ, Schedin P, et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat Biotechnol. 2022;40:527–38.

    Article  CAS  PubMed  Google Scholar 

  13. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62.

    Article  CAS  PubMed  Google Scholar 

  14. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.

    Article  Google Scholar 

  15. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hou J, Yan D, Liu Y, Huang P, Cui H. The roles of Integrin alpha5beta1 in human cancer. Onco Targets Ther. 2020;13:13329–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen JR, Zhao JT, Xie ZZ. Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother. 2022;155:113745.

    Article  CAS  PubMed  Google Scholar 

  19. Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem. 2010;10:753–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dechantsreiter MA, Planker E, Mathä B, Lohof E, Hölzemann G, Jonczyk A, et al. N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists. J Med Chem. 1999;42:3033–40.

    Article  CAS  PubMed  Google Scholar 

  21. Sadozai H, Acharjee A, Eppenberger-Castori S, Gloor B, Gruber T, Schenk M, et al. Distinct stromal and immune features collectively contribute to long-term survival in pancreatic cancer. Front Immunol. 2021;12:643529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Croizer H, Mhaidly R, Kieffer Y, Gentric G, Djerroudi L, Leclere R, et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat Commun. 2024;15:2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pei L, Liu Y, Liu L, Gao S, Gao X, Feng Y, et al. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer. 2023;22:29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang R, Qi F, Zhao F, Li G, Shao S, Zhang X, et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis. 2019;10:273.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res. 2021;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang C, Wang C, Zhou J, Liang Q, He F, Li F, et al. Fibronectin 1 activates WNT/beta-catenin signaling to induce osteogenic differentiation via integrin beta1 interaction. Lab Investig. 2020;100:1494–502.

    Article  CAS  PubMed  Google Scholar 

  31. Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC. Fibronectin in cancer: friend or foe. Cells. 2019;9:27.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang DL, Wang JM, Wu T, Du X, Yan J, Du ZX, et al. BAG5 promotes invasion of papillary thyroid cancer cells via upregulation of fibronectin 1 at the translational level. Biochim Biophys Acta Mol Cell Res. 2020;1867:118715.

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Zhao C, Ye Y, Wang Z, He Y, Li Y, et al. High expression of fibronectin 1 indicates poor prognosis in gastric cancer. Oncol Lett. 2020;19:93–102.

    CAS  PubMed  Google Scholar 

  34. Zhou WH, Du WD, Li YF, Al-Aroomi MA, Yan C, Wang Y, et al. The overexpression of Fibronectin 1 promotes cancer progression and associated with M2 macrophages polarization in head and neck squamous cell carcinoma patients. Int J Gen Med. 2022;15:5027–42.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kujawa KA, Zembala-Nozynska E, Cortez AJ, Kujawa T, Kupryjanczyk J, Lisowska KM. Fibronectin and periostin as prognostic markers in ovarian cancer. Cells. 2020;9:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Munasinghe A, Malik K, Mohamedi F, Moaraf S, Kocher H, Jones L, et al. Fibronectin acts as a molecular switch to determine SPARC function in pancreatic cancer. Cancer Lett. 2020;477:88–96.

    Article  CAS  PubMed  Google Scholar 

  37. Jun BH, Guo T, Libring S, Chanda MK, Paez JS, Shinde A, et al. Fibronectin-expressing mesenchymal tumor cells promote breast cancer metastasis. Cancers. 2020;12:2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rick JW, Chandra A, Dalle Ore C, Nguyen AT, Yagnik G, Aghi MK. Fibronectin in malignancy: cancer-specific alterations, protumoral effects, and therapeutic implications. Semin Oncol. 2019;46:284–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, et al. Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/ HIF-1alpha axis and activating wnt signaling pathway. Exp Hematol Oncol. 2023;12:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li S, Sampson C, Liu C, Piao HL, Liu HX. Integrin signaling in cancer: bidirectional mechanisms and therapeutic opportunities. Cell Commun Signal. 2023;21:266.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35:347–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yousefi H, Vatanmakanian M, Mahdiannasser M, Mashouri L, Alahari NV, Monjezi MR, et al. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene. 2021;40:1043–63.

    Article  CAS  PubMed  Google Scholar 

  43. Bonin F, Chiche A, Tariq Z, Azorin P, Nola S, Lidereau R, et al. Kindlin-1 drives early steps of breast cancer metastasis. Cancer Commun. 2022;42:1036–40.

    Article  Google Scholar 

  44. He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, et al. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin alpha5beta1-mediated YAP activation in Ewing sarcoma. Br J Cancer. 2019;121:922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sokeland G, Schumacher U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer. 2019;18:12.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Golubovskaya VM, Figel S, Ho BT, Johnson CP, Yemma M, Huang G, et al. A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1-(2-hydroxyethyl)-3, 5, 7-triaza-1-azoniatricyclo [3.3.1.1(3,7)]decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Carcinogenesis. 2012;33:1004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lang L, Shay C, Zhao X, Xiong Y, Wang X, Teng Y. Simultaneously inactivating Src and AKT by saracatinib/capivasertib co-delivery nanoparticles to improve the efficacy of anti-Src therapy in head and neck squamous cell carcinoma. J Hematol Oncol. 2019;12:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poria DK, Sheshadri N, Balamurugan K, Sharan S, Sterneck E. The STAT3 inhibitor Stattic acts independently of STAT3 to decrease histone acetylation and modulate gene expression. J Biol Chem. 2021;296:100220.

    Article  CAS  PubMed  Google Scholar 

  49. Vogt PK, Hart JR. PI3K and STAT3: a new alliance. Cancer Discov. 2011;1:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dawson JC, Serrels A, Stupack DG, Schlaepfer DD, Frame MC. Targeting FAK in anticancer combination therapies. Nat Rev Cancer. 2021;21:313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turner NC, Oliveira M, Howell SJ, Dalenc F, Cortes J, Gomez Moreno HL, et al. Capivasertib in hormone receptor-positive advanced breast cancer. N Engl J Med. 2023;388:2058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oliveira M, Rugo HS, Howell SJ, Dalenc F, Cortes J, Gomez HL, et al. Capivasertib and fulvestrant for patients with hormone receptor-positive, HER2-negative advanced breast cancer (CAPItello-291): patient-reported outcomes from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2024;25:1231–44.

    Article  CAS  PubMed  Google Scholar 

  53. Vannini A, Leoni V, Barboni C, Sanapo M, Zaghini A, Malatesta P, et al. alphavbeta3-integrin regulates PD-L1 expression and is involved in cancer immune evasion. Proc Natl Acad Sci USA. 2019;116:20141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu L, Gao Y, Huang D, Liu H, Yin D, Li M, et al. Targeting integrin alpha5 in fibroblasts potentiates colorectal cancer response to PD-L1 blockade by affecting extracellular-matrix deposition. J Immunother Cancer. 2023;11:e007447.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. Jun Ye, Dr. Ke Wang, and Dr. Pin Wu for their invaluable advice and insights during the preparation of this manuscript. Their expertise significantly contributed to the completion of this work.

Funding

This work was supported by the National Natural Science Foundation of China (82403697 to W.Z.C., 82273275 to C.N.), the Natural Science Foundation of Zhejiang Province (ZCLY24H1601 to W.Z.C., LRG25H160001 to C.N.), the Medical and Health Science and Technology Project of Zhejiang Province (2023KY861 to M.J.J., 2023KY046 to W.J.X.), the Zhejiang Province Traditional Chinese Medicine Science and Technology Project (2023ZR096 to X.B.Z.), and the National Key Research and Development Program of China (2022YFC2505100 to W.Z.C., 2022YFA1105200 to J.H.).

Author information

Authors and Affiliations

Authors

Contributions

WZC and WJX designed the study, supervised the project, and drafted the manuscript. MJJperformed the bioinformatics analysis, managed data interpretation, and participated in manuscript revision. LSS, XBZ, MXK, and JMH conducted the in vitro and in vivo experiments respectively, contributing to data collection and analysis. ZGC, JH, and CN focused on revising the manuscript for critical content. All authors reviewed, edited, and approved the final manuscript, ensuring the accuracy and integrity of the work.

Corresponding authors

Correspondence to Jian Huang, Chao Ni or Wenjie Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study received ethical approval from the Ethical Committee of the Second Affiliated Hospital, Zhejiang University School of Medicine (Approval No. YAN 2021-0421, June 2021). Written informed consent was obtained from all participants providing clinical samples. All procedures were conducted in strict accordance with the guidelines and regulations approved by the Ethical Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jiang, M., Zou, X. et al. Fibroblast Activation Protein (FAP)+ cancer-associated fibroblasts induce macrophage M2-like polarization via the Fibronectin 1-Integrin α5β1 axis in breast cancer. Oncogene 44, 2396–2412 (2025). https://doi.org/10.1038/s41388-025-03359-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03359-3

Search

Quick links