Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer stem cells-derived exosomal TSPAN8 enhances non-stem cancer cells stemness and promotes malignant progression in PDAC

Abstract

Cancer stem cells (CSC) play a crucial role in pancreatic ductal adenocarcinoma (PDAC) progression and therapeutic resistance. However, the underlying mechanisms and potential targeted treatment strategies remain poorly understood. In this study, we employed single-cell RNA sequencing and exosomal profiling, identifying TSPAN8-enriched exosomes secreted by CSC, which are associated with poor survival rates in PDAC patients. They enhanced stemness in the surrounding non-stem cancer cells (NSCC) by activating the Sonic Hedgehog (Hh) signalling pathway. This exosomal TSPAN8-Hh signalling axis significantly increases the clonogenic ability, invasiveness, and chemoresistance of PDAC cells. Furthermore, TSPAN8-enriched exosomes promoted a higher stem cell frequency, tumourigenicity, and tumour growth rate in vivo, confirming their critical roles in PDAC malignant progression. Our findings underscore the importance of TSPAN8-enriched exosomes for CSC-NSCC communication during PDAC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased secretion of TSPAN8highRAB27Bhigh exosomes in PDAC CSC.
Fig. 2: TSPAN8 is highly expressed in PDAC CSC exosomes.
Fig. 3: Exosomal TSPAN8 promotes NSCC stemness.
Fig. 4: Exosomal TSPAN8 enhance NSCC stemness via activating Hh signalling pathway.
Fig. 5: Exosomal TSPAN8 enhances malignant properties of PDAC.
Fig. 6: Exosomal TSPAN8 promotes tumourigenesis in vivo.

Similar content being viewed by others

Data availability

The PDAC and adjacent non-cancerous tissue scRNA-seq data were downloaded from the Gene Expression Omnibus (GEO) database with accession number GSE212966 (PRJNA879876). Corresponding analysis scripts and codes are available upon request from the lead author, Xiaoyi Yang (nicole_yang@sjtu.edu.cn).

References

  1. Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18:493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klose J, Ronellenfitsch U, Kleeff J. Management problems in patients with pancreatic cancer from a surgeon’s perspective. Semin Oncol. 2021;48:76–83.

    Article  PubMed  Google Scholar 

  4. Alausa A, Lawal KA, Babatunde OA, Obiwulu ENO, Oladokun OC, Fadahunsi OS, et al. Overcoming immunotherapeutic resistance in PDAC: SIRPα-CD47 blockade. Pharmacol Res. 2022;181:106264.

    Article  CAS  PubMed  Google Scholar 

  5. Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20:4504.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17:313–9.

    Article  CAS  PubMed  Google Scholar 

  7. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat Cancer. 2023;4:1063–82.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Loh J-J, Ma S. Hallmarks of cancer stemness. Cell Stem Cell. 2024;31:617–39.

    Article  CAS  PubMed  Google Scholar 

  10. Guan T, Li M, Song Y, Chen J, Tang J, Zhang C, et al. Phosphorylation of USP29 by CDK1 Governs TWIST1 stability and oncogenic functions. Adv Sci. 2023;10:e2205873.

    Article  Google Scholar 

  11. Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther. 2021;6:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Sci. 2020;367:eaau6977.

    Article  Google Scholar 

  13. Huang W, Yan Y, Liu Y, Lin M, Ma J, Zhang W, et al. Exosomes with low miR-34c-3p expression promote invasion and migration of non-small cell lung cancer by upregulating integrin α2β1. Signal Transduct Target Ther. 2020;5:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Treps L, Perret R, Edmond S, Ricard D, Gavard J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6:1359479.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Z, Sun H, Provaznik J, Hackert T, Zöller M. Pancreatic cancer-initiating cell exosome message transfer into noncancer-initiating cells: the importance of CD44v6 in reprogramming. J Exp Clin Cancer Res. 2019;38:132.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun H, Rana S, Wang Z, Zhao K, Schnölzer M, Provaznik J, et al. The pancreatic cancer-initiating cell marker CD44v6 affects transcription, translation, and signaling: consequences for exosome composition and delivery. J Oncol. 2019;2019:3516973.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kyuno D, Zhao K, Schnölzer M, Provaznik J, Hackert T, Zöller M. Claudin7-dependent exosome-promoted reprogramming of nonmetastasizing tumor cells. Int J Cancer. 2019;145:2182–2200.

    Article  CAS  PubMed  Google Scholar 

  19. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mirzaei R, Sarkar S, Dzikowski L, Rawji KS, Khan L, Faissner A, et al. Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Oncoimmunology. 2018;7:e1478647.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hwang WL, Lan HY, Cheng WC, Huang SC, Yang MH. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer. J Hematol Oncol. 2019;12:10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:75.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang Y, Zucker B, Zhang S, Elias S, Zhu Y, Chen H, et al. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat Cell Biol. 2019;21:991–1002.

    Article  CAS  PubMed  Google Scholar 

  24. Wang T, Wang X, Wang H, Li L, Zhang C, Xiang R, et al. High TSPAN8 expression in epithelial cancer cell-derived small extracellular vesicles promote confined diffusion and pronounced uptake. J Extracell Vesicles. 2021;10:e12167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malla RR, Pandrangi S, Kumari S, Gavara MM, Badana AK. Exosomal tetraspanins as regulators of cancer progression and metastasis and novel diagnostic markers. Asia Pac J Clin Oncol. 2018;14:383–91.

    Article  PubMed  Google Scholar 

  26. Susa KJ, Kruse AC, Blacklow SC. Tetraspanins: structure, dynamics, and principles of partner-protein recognition. Trends Cell Biol. 2024;34:509–22.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, et al. TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun. 2019;10:2863.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan SJ, Wu YB, Cai S, Pan YX, Liu W, Bian LG, et al. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochem Biophys Res Commun. 2015;458:476–82.

    Article  CAS  PubMed  Google Scholar 

  30. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–78.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Fan J, Xu T, Ahmadinejad N, Hess K, Lin SH, et al. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer after concurrent chemoradiation. Sci Adv. 2020;6:eaaz6162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Voglstaetter M, Thomsen AR, Nouvel J, Koch A, Jank P, Navarro EG, et al. Tspan8 is expressed in breast cancer and regulates E-cadherin/catenin signalling and metastasis accompanied by increased circulating extracellular vesicles. J Pathol. 2019;248:421–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan G, Yu B, Tang L, Zhu R, Chen J, Zhu Y, et al. TSPAN8(+) myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci Transl Med. 2024;16:eadj5705.

    Article  CAS  PubMed  Google Scholar 

  34. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24:978–85.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 2018;564:268–72.

    Article  CAS  PubMed  Google Scholar 

  36. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3. https://doi.org/10.3402/jev.v3.24858.

  38. Gallmeier E, Hermann PC, Mueller M-T, Machado JG, Ziesch A, De Toni EN, et al. Inhibition of ataxia telangiectasia- and Rad3-related function abrogates the in vitro and in vivo tumorigenicity of human colon cancer cells through depletion of the CD133+ tumor-initiating cell fraction. Stem Cells. 2011;29:418–29.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Zhao D, Wang Y, Liu M, Zhang Y, Feng T. et al. Lactylated Apolipoprotein C-II induces immunotherapy resistance by promoting extracellular lipolysis. Adv Sci (Weinh). 2024;11:e2406333.

    Article  PubMed  Google Scholar 

  40. Chen K, Wang Q, Li M, Guo H, Liu W, Wang F, et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine. 2021;66:103315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 2019;29:725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

    Article  CAS  PubMed  Google Scholar 

  43. Lai H, Li Y, Zhang H, Hu J, Liao J, Su Y, et al. exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids. Nucleic Acids Res. 2022;50:D118–d128.

    Article  CAS  PubMed  Google Scholar 

  44. Huang H, Hou J, Liu K, Liu Q, Shen L, Liu B, et al. RAB27A-dependent release of exosomes by liver cancer stem cells induces Nanog expression in their differentiated progenies and confers regorafenib resistance. J Gastroenterol Hepatol. 2021;36:3429–37.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng WC, Liao TT, Lin CC, Yuan LE, Lan HY, Lin HH, et al. RAB27B-activated secretion of stem-like tumor exosomes delivers the biomarker microRNA-146a-5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer. Int J Cancer. 2019;145:2209–24.

    Article  CAS  PubMed  Google Scholar 

  46. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang W, Liu L, Wang M, Li X, Zhou T, Hou X, et al. KLF15 suppresses stemness of pancreatic cancer by decreasing USP21-mediated Nanog stability. Cell Mol Life Sci. 2024;81:417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  49. Lin L, Jou D, Wang Y, Ma H, Liu T, Fuchs J, et al. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells. Int J Oncol. 2016;49:2265–74.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol. 2023;24:668–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Natu J, Nagaraju GP. Gemcitabine effects on tumor microenvironment of pancreatic ductal adenocarcinoma: Special focus on resistance mechanisms and metronomic therapies. Cancer Lett. 2023;573:216382.

    Article  CAS  PubMed  Google Scholar 

  55. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Rev Cancer. 2003;3:330–8.

    Article  CAS  Google Scholar 

  56. Du L, Li YJ, Fakih M, Wiatrek RL, Duldulao M, Chen Z, et al. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat Commun. 2016;7:12326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, et al. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther. 2024;9:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sousa D, Lima RT, Vasconcelos MH. Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends Mol Med. 2015;21:595–608.

    Article  CAS  PubMed  Google Scholar 

  59. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13:871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004;16:415–21.

    Article  PubMed  Google Scholar 

  62. Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 2008;18:199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Charrin S, Jouannet S, Boucheix C, Rubinstein E. Tetraspanins at a glance. J Cell Sci. 2014;127:3641–8.

    CAS  PubMed  Google Scholar 

  64. Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, et al. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res. 2005;11:2840–52.

    Article  CAS  PubMed  Google Scholar 

  65. Lu X, An L, Fan G, Zang L, Huang W, Li J, et al. EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res. 2022;32:359–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang H-S, Liu H-Y, Zhou Z, Sun H-L, Liu M-Y. TSPAN8 promotes colorectal cancer cell growth and migration in LSD1-dependent manner. Life Sci. 2020;241:117114.

    Article  CAS  PubMed  Google Scholar 

  67. Thakur A, Xu C, Li WK, Qiu G, He B, Ng S-P, et al. In vivo liquid biopsy for glioblastoma malignancy by the AFM and LSPR based sensing of exosomal CD44 and CD133 in a mouse model. Biosens Bioelectron. 2021;191:113476.

    Article  CAS  PubMed  Google Scholar 

  68. Mu W, Xu Y, Gu P, Wang W, Li J, Ge Y, et al. Exosomal CD44 cooperates with integrin α6β4 to support organotropic metastasis via regulating tumor cell motility and target host cell activation. Engineering. 2021;7:1413–23.

    Article  Google Scholar 

  69. Kaneko K, Liang Y, Liu Q, Zhang S, Scheiter A, Song D, et al. Identification of CD133+ intercellsomes in intercellular communication to offset intracellular signal deficit. Elife. 2023;12:RP86824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Min J, Yang S, Cai Y, Vanderwall DR, Wu Z, Li S, et al. Tetraspanin Tspan8 restrains interferon signaling to stabilize intestinal epithelium by directing endocytosis of interferon receptor. Cell Mol Life Sci. 2023;80:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhuang L, Jin G, Hu X, Yang Q, Pei X, Zhao W. TSPAN8 alleviates high glucose-induced apoptosis and autophagy via targeting mTORC2. Cell Biol Int. 2022;46:1693–703.

    Article  CAS  PubMed  Google Scholar 

  72. Sun Z, Wang L, Dong L, Wang X. Emerging role of exosome signalling in maintaining cancer stem cell dynamic equilibrium. J Cell Mol Med. 2018;22:3719–28.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Seo N, Akiyoshi K, Shiku H. Exosome-mediated regulation of tumor immunology. Cancer Sci. 2018;109:2998–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li W, Zhang L, Guo B, Deng J, Wu S, Li F, et al. Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 2019;18:22.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sun Z, Wang L, Zhou Y, Dong L, Ma W, Lv L, et al. Glioblastoma stem cell-derived exosomes enhance stemness and tumorigenicity of glioma cells by transferring Notch1 protein. Cell Mol Neurobiol. 2020;40:767–84.

    Article  CAS  PubMed  Google Scholar 

  76. Morris JPT, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol. 2022;85:107–22.

    Article  CAS  PubMed  Google Scholar 

  78. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:2140–1.

    Article  PubMed  Google Scholar 

  79. Zhao Y, Qin C, Zhao B, Wang Y, Li Z, Li T, et al. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res. 2023;42:122.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  82. Li H, Jiang W, Liu X-N, Yuan L-Y, Li T-J, Li S, et al. TET1 downregulates epithelial-mesenchymal transition and chemoresistance in PDAC by demethylating CHL1 to inhibit the Hedgehog signaling pathway. Oncogene. 2020;39:5825–38.

    Article  CAS  PubMed  Google Scholar 

  83. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309–13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2023YFC2506400), National Natural Science Funds (grant number 82225038, 82430092, 82272828, 82172735, 32270749, 32370755, and M-0349), Shanghai Science and Technology Innovation Action Plan (grant number 23J21900900), National Science Fund for Distinguished Young Scholars Fund (grant number 82125026), Innovative research team of high-level local universities in Shanghai (grant number SHSMU-ZLCX20211600), Talent Introduction Fund of Fudan University Shanghai Cancer Center (grant number YJRC202403), Shanghai Anticancer Association SOAR PROJECT (SACA-AX202401), Natural Science Foundation of Shanghai (grant number 22ZR1450000), Shanghai leading talent project (grant number QNWS2024019). Additional support came from Medical Innovation Research Special Project of Shanghai (Grant No. 22Y11908600). All authors involved in this study have declared that they have no financial conflicts of interest in relation to this work.

Author information

Authors and Affiliations

Authors

Contributions

XY, RZ, JX, JW, YJ, YZ, SC, BS, ML, WR, JL, RL and JJ, performed experiments. HS, HW, BY, RL, and JJ provided human samples. XY and JW performed bioinformatics analyses. XY, RZ, WL, GF, and BY interpreted data and wrote the manuscript. HW, WL, GF, and BY supervised the study and reviewed the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Bo Yu, Guangjian Fan or Wenting Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, R., Jin, J. et al. Cancer stem cells-derived exosomal TSPAN8 enhances non-stem cancer cells stemness and promotes malignant progression in PDAC. Oncogene 44, 2328–2341 (2025). https://doi.org/10.1038/s41388-025-03412-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03412-1

Search

Quick links