Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthetic lethality through Gsk3β inhibition in glioma stem cells via the WNT-WWC1-YAP axis

Abstract

Glioblastoma (GBM) is an aggressive brain tumor driven by glioma stem cells (GSCs), which contribute to tumor growth and therapeutic resistance. This study investigates the effects of Gsk3β inhibition on GSC viability, focusing on the role of the canonical WNT signaling pathway. We found that Gsk3β inhibition activates the WNT pathway, leading to upregulation of Wwc1, which downregulates Yap via Lats1 phosphorylation. This reduces GSC proliferation, self-renewal, and enhances chemosensitivity. Analysis of clinical datasets revealed that WNT pathway activation correlates with improved prognosis in proneural gliomas, particularly in IDH1-mutated tumors. Our findings suggest that targeting the WNT-WWC1-YAP axis, particularly through Gsk3β inhibition, could induce synthetic lethality in GSCs and provide a promising therapeutic strategy for gliomas. These results highlight the potential of exploiting WNT-induced synthetic lethality as a novel approach for glioma treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The GSK3 inhibitor CHIR inhibits GSC growth and induce cell death.
Fig. 2: Gsk3β but not Gsk3α regulates the proliferation, self-renewal and tumorigenesis capacity of mouse GSCs (HTS).
Fig. 3: Activation of canonical WNT signaling affects the growth of HTS cells and their sensitivity to CHIR treatment.
Fig. 4: Activation of the canonical WNT signaling pathway in human gliomas is associated with proneural/G-CIMP subtypes and better prognosis.
Fig. 5: Activation of Wwc1 expression is the downstream effect of CHIR treatment.
Fig. 6: The Lats-Yap axis is the target of Gsk3β inhibition by CHIR.
Fig. 7: Yap modulates glioma cell proliferation, self-renewal and sensitivity to chemotherapeutic agents.
Fig. 8: The Gsk3β inhibitor alsterpaullone (ALP) inhibits glioma growth in vitro and in vivo.

Similar content being viewed by others

Data availability

Any additional information related to this manuscript is available from the lead contact upon request.

References

  1. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro Oncol. 2022;24:v1–v95. https://doi.org/10.1093/neuonc/noac202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor Evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2018;33:152 https://doi.org/10.1016/j.ccell.2017.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xie XP, Laks DR, Sun D, Ganbold M, Wang Z, Pedraza AM, et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion, and recurrence following chemotherapy. Dev Cell. 2022;57:32–46.e38. https://doi.org/10.1016/j.devcel.2021.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488:522–6. https://doi.org/10.1038/nature11287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. https://doi.org/10.1038/nature03128.

    Article  CAS  PubMed  Google Scholar 

  7. Wu M, Wang T, Ji N, Lu T, Yuan R, Wu L, et al. Multi-omics and pharmacological characterization of patient-derived glioma cell lines. Nat Commun. 2024;15:6740. https://doi.org/10.1038/s41467-024-51214-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi Y, Lim SK, Liang Q, Iyer SV, Wang HY, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature. 2019;567:341–6. https://doi.org/10.1038/s41586-019-0993-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8:97–106. https://doi.org/10.1038/nrclinonc.2010.196.

    Article  CAS  PubMed  Google Scholar 

  10. Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99. https://doi.org/10.1016/j.cell.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  11. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26. https://doi.org/10.1038/nrc3419.

    Article  CAS  PubMed  Google Scholar 

  12. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29:508–22. https://doi.org/10.1016/j.ccell.2016.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang L, Jung NY, Atari A, Rodriguez DJ, Kesar D, Song TY, et al. Author Correction: Systematic profiling of conditional pathway activation identifies context-dependent synthetic lethalities. Nat Genet. 2024;56:553. https://doi.org/10.1038/s41588-024-01680-3.

    Article  CAS  PubMed  Google Scholar 

  14. Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell. 2009;15:45–56. https://doi.org/10.1016/j.ccr.2008.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uhrbom L, Hesselager G, Nistér M, Westermark B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 1998;58:5275–9.

    CAS  PubMed  Google Scholar 

  16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47 https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  PubMed  Google Scholar 

  19. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. https://doi.org/10.1093/bioinformatics/btp616.

    Article  CAS  PubMed  Google Scholar 

  21. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

    Article  Google Scholar 

  22. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40. https://doi.org/10.1093/bioinformatics/btr260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Broos S, Hulpiau P, Galle J, Hooghe B, Van Roy F, De Bleser P. ConTra v2: a tool to identify transcription factor binding sites across species, update 2011. Nucleic Acids Res. 2011;39:W74–78. https://doi.org/10.1093/nar/gkr355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8. https://doi.org/10.1038/nature07385.

    Article  CAS  Google Scholar 

  25. Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T. Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci Data. 2017;4:170024. https://doi.org/10.1038/sdata.2017.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22. https://doi.org/10.1016/j.ccr.2010.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46. https://doi.org/10.1016/j.ccr.2013.08.001.

    Article  CAS  PubMed  Google Scholar 

  28. Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep. 2024;43:113926 https://doi.org/10.1016/j.celrep.2024.113926.

    Article  CAS  PubMed  Google Scholar 

  29. Baumgartner R, Poernbacher I, Buser N, Hafen E, Stocker H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell. 2010;18:309–16. https://doi.org/10.1016/j.devcel.2009.12.013.

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell. 2010;18:288–99. https://doi.org/10.1016/j.devcel.2009.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121:381–96. https://doi.org/10.1007/s00401-011-0800-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, et al. Medulloblastoma. Nat Rev Dis Prim. 2019;5:11 https://doi.org/10.1038/s41572-019-0063-6.

    Article  PubMed  Google Scholar 

  33. Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23:2729–41. https://doi.org/10.1101/gad.1824509.

    Article  CAS  Google Scholar 

  34. Ren F, Shi Q, Chen Y, Jiang A, Ip YT, Jiang H, et al. Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration. Cell Res. 2013;23:1133–46. https://doi.org/10.1038/cr.2013.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 2014;158:185–97. https://doi.org/10.1016/j.cell.2014.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell. 2014;158:171–84. https://doi.org/10.1016/j.cell.2014.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Atkinson JM, Rank KB, Zeng Y, Capen A, Yadav V, Manro JR, et al. Activating the Wnt/β-catenin pathway for the treatment of melanoma-application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. PLoS ONE. 2015;10:e0125028 https://doi.org/10.1371/journal.pone.0125028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P Jr., Hemmings BA, et al. GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS ONE. 2009;4:e7443 https://doi.org/10.1371/journal.pone.0007443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kageshita T, Hamby CV, Ishihara T, Matsumoto K, Saida T, Ono T. Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol. 2001;145:210–6. https://doi.org/10.1046/j.1365-2133.2001.04336.x.

    Article  CAS  PubMed  Google Scholar 

  40. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development. 2004;131:2791–801. https://doi.org/10.1242/dev.01165.

    Article  CAS  PubMed  Google Scholar 

  41. Cao X, Pfaff SL, Gage FH. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 2008;22:3320–34. https://doi.org/10.1101/gad.1726608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Panciera T, Azzolin L, Fujimura A, Di Biagio D, Frasson C, Bresolin S, et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell. 2016;19:725–37. https://doi.org/10.1016/j.stem.2016.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499–513. https://doi.org/10.1016/j.tcb.2015.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guske K, Schmitz B, Schelleckes M, Duning K, Kremerskothen J, Pavenstädt HJ, et al. Tissue-specific differences in the regulation of KIBRA gene expression involve transcription factor TCF7L2 and a complex alternative promoter system. J Mol Med. 2014;92:185–96. https://doi.org/10.1007/s00109-013-1089-y.

    Article  CAS  PubMed  Google Scholar 

  45. Thorne CA, Wichaidit C, Coster AD, Posner BA, Wu LF, Altschuler SJ. GSK-3 modulates cellular responses to a broad spectrum of kinase inhibitors. Nat Chem Biol. 2015;11:58–63. https://doi.org/10.1038/nchembio.1690.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Wei Mo for HTS cells and Dr. Shangfeng Gao for GBM paraffin sections. This work was funded by the National Key Research and Development Program of China (#2022YFA1103900 to JC), the Changping Laboratory and the CAMS Innovation Fund for Medical Sciences (CIFMS) (#2024-I2M-3-022 to JC). Additional funds to JC are from the Chinese Institute for Brain Research and Changping Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

FFR, XZL, TL, YLY, GC and SH performed the experiments. JC designed the experiments. FFR, LFP and JC analyzed the data and wrote the paper. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Luis F. Parada or Jian Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All the experimental procedures were performed in compliance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Soochow University or the Chinese Institute for Brain Research. All mouse experiments were approved by and performed according to the institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Yi, Y., Lu, T. et al. Synthetic lethality through Gsk3β inhibition in glioma stem cells via the WNT-WWC1-YAP axis. Oncogene 44, 2427–2439 (2025). https://doi.org/10.1038/s41388-025-03418-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03418-9

This article is cited by

Search

Quick links