Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of NUMB promotes hepatomegaly and hepatocellular carcinoma through the AKT/glycogen/hippo signaling

Abstract

Excessive glycogen deposition is a common feature of liver enlargement, liver adenoma, and liver cancer, yet the underlying mechanisms remain poorly understood. In this study, we found that NUMB, a well-known cell fate determinant, is downregulated in glycogen-rich adenomas and hepatocellular carcinoma (HCC). NUMB-deficient livers developed excessive glycogen accumulation and adenoma formation particularly in aged mice. Surprisingly, the Alb-Cre:Trp53loxP/loxP liver displayed no similar defective morphology and function, although p53 is considered an important downstream target of NUMB and closely related to glucose metabolism. Instead, we observed a synergistic interaction between NUMB and p53 in regulating glycogen metabolism in HCC tissues and cell lines. Combined knockout of NUMB and p53 in mice significantly enhances glycogen accumulation and hepatomegaly, particularly when mice are subjected to a high sugar diet (HSD), leading to higher cancer incidence. Mechanistically, NUMB deficiency disrupts the PTEN-PI3K/AKT signaling pathway, promoting glycogen accumulation. Subsequently, successive glycogen deposition triggers hepatomegaly and tumorigenesis via the Hippo signaling pathway. Our results suggest that NUMB plays a crucial role in maintaining the homeostasis of glucose metabolism and suppressing the development of liver tumors associated with glycogen deposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NUMB is downregulated in glycogen-accumulating liver adenomas and HCC.
Fig. 2: NUMB ablation induces liver enlargement and liver adenoma due to abnormal glycometabolism.
Fig. 3: The concurrent absence of NUMB and p53 synergistically enhances glycogen accumulation.
Fig. 4: Double deletion of NUMB and p53 exacerbates hepatomegaly.
Fig. 5: Double deletion of NUMB and p53 promotes liver cancer driven by abnormal glucose metabolism.
Fig. 6: Loss of NUMB and p53 promotes glycogen accumulation through PTEN/PI3K/AKT signaling.
Fig. 7: Loss of NUMB and p53 fosters hepatocellular carcinoma via the glycogen-HIPPO axis.
Fig. 8: The NUMB&p53-glycogen-Yap module exhibits alterations in human liver cancer specimens.

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kwok MK, Lewin KJ. Massive hepatomegaly in adult polycystic liver disease. Am J Surg Pathol. 1988;12:321–4.

    Article  CAS  PubMed  Google Scholar 

  2. Ebert EC, Nagar M, Hagspiel KD. Gastrointestinal and hepatic complications of sickle cell disease. Clin Gastroenterol Hepatol. 2010;8:483–9. quiz.e70.

    Article  PubMed  Google Scholar 

  3. He F, Antonucci L, Yamachika S, Zhang Z, Taniguchi K, Umemura A, et al. NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. J Hepatol. 2020;72:1182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bianchi L. Glycogen storage disease I and hepatocellular tumours. Eur J Pediatr. 1993;152:S63–70.

    Article  PubMed  Google Scholar 

  5. Chatila R, West AB. Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine. 1996;75:327–33.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson LH, Cho JH, Estrella A, Smyth JA, Wu R, Chengsupanimit T, et al. Liver Glycogen Phosphorylase Deficiency Leads to Profibrogenic Phenotype in a Murine Model of Glycogen Storage Disease Type VI. Hepatol Commun. 2019;3:1544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 2021;184:5559–76.e19.

    Article  CAS  PubMed  Google Scholar 

  8. Yu FX, Zhao B, Guan KL. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell. 2015;163:811–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol. 2016;18:886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin Cell Biol. 2019;61:64–71.

    Article  CAS  PubMed  Google Scholar 

  11. Hay N. Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta. 2011;1813:1965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ono H, Shimano H, Katagiri H, Yahagi N, Sakoda H, Onishi Y, et al. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes. 2003;52:2905–13.

    Article  CAS  PubMed  Google Scholar 

  13. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8:187–98.

    Article  CAS  PubMed  Google Scholar 

  14. Shao C, Li Z, Ahmad N, Liu X. Regulation of PTEN degradation and NEDD4-1 E3 ligase activity by Numb. Cell Cycle. 2017;16:957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye L, Lou F, Yu F, Zhang D, Wang C, Wu F, et al. NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts. Bone Res. 2018;6:32.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shu Y, Xu Q, Xu Y, Tao Q, Shao M, Cao X, et al. Loss of Numb promotes hepatic progenitor expansion and intrahepatic cholangiocarcinoma by enhancing Notch signaling. Cell Death Dis. 2021;12:966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G, et al. NUMB controls p53 tumour suppressor activity. Nature. 2008;451:76–80.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 2011;13:310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen SL, Zhang CZ, Liu LL, Lu SX, Pan YH, Wang CH, et al. A GYS2/p53 Negative Feedback Loop Restricts Tumor Growth in HBV-Related Hepatocellular Carcinoma. Cancer Res. 2019;79:534–45.

    Article  CAS  PubMed  Google Scholar 

  20. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993;7:1126–32.

    Article  CAS  PubMed  Google Scholar 

  21. Fan X, Wang R, Song Y, Wang Z, Wang X, Liu Y, et al. Effects of high-sugar, high-cholesterol, and high-fat diet on phospholipid profile of mouse tissues with a focus on the mechanism of plasmalogen synthesis. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868:159345.

    Article  CAS  PubMed  Google Scholar 

  22. Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, et al. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest. 2023;133:e168888.

  23. Sczaniecka M, Gladstone K, Pettersson S, McLaren L, Huart AS, Wallace M. MDM2 protein-mediated ubiquitination of numb protein: identification of a second physiological substrate of MDM2 that employs a dual-site docking mechanism. J Biol Chem. 2012;287:14052–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu XH, Yao S, Levine AC, Kirschenbaum A, Pan J, Wu Y, et al. Nandrolone, an anabolic steroid, stabilizes Numb protein through inhibition of mdm2 in C2C12 myoblasts. J Androl. 2012;33:1216–23.

    Article  CAS  PubMed  Google Scholar 

  25. Uko NE, Guner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem. 2020;20:883–900.

    Article  CAS  PubMed  Google Scholar 

  26. Manmadhan S, Ehmer U. Hippo Signaling in the Liver - A Long and Ever-Expanding Story. Front Cell Dev Biol. 2019;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  28. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  29. Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, et al. Fibroblasts Mobilize Tumor Cell Glycogen to Promote Proliferation and Metastasis. Cell Metab. 2019;29:141–55.e9.

    Article  CAS  PubMed  Google Scholar 

  30. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. 2012;16:751–64.

    Article  CAS  PubMed  Google Scholar 

  31. McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chou JY, Jun HS, Mansfield BC. Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nat Rev Endocrinol. 2010;6:676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Franco LM, Krishnamurthy V, Bali D, Weinstein DA, Arn P, Clary B, et al. Hepatocellular carcinoma in glycogen storage disease type Ia: a case series. J Inherit Metab Dis. 2005;28:153–62.

    Article  CAS  PubMed  Google Scholar 

  34. Tucci FA, Pennisi R, Rigiracciolo DC, Filippone MG, Bonfanti R, Romeo F, et al. Loss of NUMB drives aggressive bladder cancer via a RHOA/ROCK/YAP signaling axis. Nat Commun. 2024;15:10378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, et al. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med. 2024;30:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. El-Zeftawy M, Ghareeb D, ElBealy ER, Saad R, Mahmoud S, Elguindy N, et al. Berberine chloride ameliorated PI3K/Akt-p/SIRT-1/PTEN signaling pathway in insulin resistance syndrome induced in rats. J Food Biochem. 2019;43:e13049.

    Article  PubMed  Google Scholar 

  37. Chen G, Fan XY, Zheng XP, Jin YL, Liu Y, Liu SC. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice. Stem Cell Res Ther. 2020;11:401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trotman LC, Pandolfi PP. PTEN and p53: who will get the upper hand?. Cancer Cell. 2003;3:97–9.

    Article  CAS  PubMed  Google Scholar 

  39. Nakanishi A, Kitagishi Y, Ogura Y, Matsuda S. The tumor suppressor PTEN interacts with p53 in hereditary cancer (Review). Int J Oncol. 2014;44:1813–9.

    Article  CAS  PubMed  Google Scholar 

  40. Munoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Guang Yang and Guangneng Liao for their help with mouse management and breeding.

Funding

This study was supported by grants from the Natural Science Foundation of China (U22A20343, 82200691, and 82404060); the Key Research and Development Program and the Young Scientists Fund of the Natural Science Foundation of Sichuan Province (2023YFS0041, 2024NSFSC1901, and 2024NSFSC0637); the Postdoctor Research Fund of West China Hospital, Sichuan University (2024HXBH083).

Author information

Authors and Affiliations

Authors

Contributions

Yuke Shu and Qing Tao performed most of the experiments equally and wrote this manuscript; Yujun Shi, Chuan Li and Qing Xu designed and supervised the study and revised this manuscript; Zhenru Wu, Yahong Xu and Menglin Chen performed histology examination; Tingting Ma, Yuwei Chen, Fei Liu and Zhiqi Zhu collected clinical data; Xinyu Wei, Mingyang Shao,Xiaoyue Cao, Yuwei Chen, and Yuting Zeng performed informatic analysis; Yongjie Zhou and Wei Peng gave critical suggestions. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chuan Li or Yujun Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The animal care and experimental procedures were conducted in accordance with national and international laws and policies and were approved by the Animal Care and Use Committee of Sichuan University(Approval No. 20230206006). All patient materials were obtained with written informed consent. Approval for this study was granted by the Ethics Committee of the West China Hospital of Sichuan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Tao, Q., Xu, Q. et al. Loss of NUMB promotes hepatomegaly and hepatocellular carcinoma through the AKT/glycogen/hippo signaling. Oncogene 44, 2574–2587 (2025). https://doi.org/10.1038/s41388-025-03430-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03430-z

Search

Quick links