Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

REPS2 attenuates cancer stemness through inhibiting Wnt signaling by autophagy mediated degradation of β-catenin

Abstract

Tumor suppressor genes (TSGs) that regulate the stemness of lung cancer cells remain to be determined. We conducted a genome-wide CRISPR/Cas9-mediated screening and identified REPS2 as a potent TSG that negatively regulates the stemness of lung cancer cells. Its tumor suppressive function was confirmed both in vitro and in vivo. Mechanistically, P62 interacts simultaneously with both β-catenin and REPS2, leading to autophagy-lysosome-mediated degradation of β-catenin and attenuation of Wnt signaling. A β-catenin inhibitor synergizes with inhibitors for driver mutants to induce immunogenic cell death, which could be exploited for enhancing efficacy of tumor immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of tumor stemness suppressor genes via CRISPR/Cas9 screening.
Fig. 2: REPS2 inhibits the stemness of lung cancer cells.
Fig. 3: REPS2 is a potent tumor suppressor of cell growth/survival for lung cancer cells in vitro.
Fig. 4: REPS2 is a potent tumor suppressor in lung cancer mouse model in vivo.
Fig. 5: REPS2 inhibits the stemness through suppressing Wnt/β-catenin signaling.
Fig. 6: REPS2 promotes the degradation of β-catenin through interaction with P62.
Fig. 7: Combinational inhibition of WNT/β-catenin pathway and MEK enhanced treatment of immunotherapy against REPS2-deficient/Kras mutant lung cancers.

Similar content being viewed by others

Data availability

All the data obtained and/or analyzed during the current study were available from the corresponding authors on reasonable request.

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    PubMed  Google Scholar 

  2. Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin N Am. 2016;25:447–68.

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    PubMed  Google Scholar 

  4. Lai D, Visser-Grieve S, Yang X. Tumour suppressor genes in chemotherapeutic drug response. Biosci Rep. 2012;32:361–74.

    Article  PubMed  CAS  Google Scholar 

  5. Yeddula N, Xia Y, Ke E, Beumer J, Verma IM. Screening for tumor suppressors: loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci USA. 2015;112:E6476–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Z, Fan Z, Dou X, Zhou Q, Zeng G, Liu L, et al. Inactivation of tumor suppressor gene Clusterin leads to hyperactivation of TAK1-NF-kappaB signaling axis in lung cancer cells and denotes a therapeutic opportunity. Theranostics. 2020;10:11520–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhou Q, Chen W, Fan Z, Chen Z, Liang J, Zeng G, et al. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics. 2021;11:6592–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu L, Lei Y, Chen W, Zhou Q, Zheng Z, Zeng G, et al. In vivo genome-wide CRISPR screening identifies ZNF24 as a negative NF-kappaB modulator in lung cancer. Cell Biosci. 2022;12:193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bao B, Ahmad A, Azmi AS, Ali S, Sarkar FH. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013;Chapter 14:Unit 14.25.

  11. Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther. 2021;6:62.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer metastasis and treatment resistance: mechanistic insights and therapeutic targeting of cancer stem cells and the tumor microenvironment. Biomedicines. 2022;10:2988.

  13. Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine. 2016;95:S20–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer. 2023;22:172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ikeda M, Ishida O, Hinoi T, Kishida S, Kikuchi A. Identification and characterization of a novel protein interacting with Ral-binding protein 1, a putative effector protein of Ral. J Biol Chem. 1998;273:814–21.

    Article  PubMed  CAS  Google Scholar 

  17. Polo S, Confalonieri S, Salcini AE, Di Fiore PP. EH and UIM: endocytosis and more. Sci STKE. 2003;2003:re17.

    Article  PubMed  Google Scholar 

  18. Zhang H, Duan CJ, Zhang H, Cheng YD, Zhang CF. Expression and clinical significance of REPS2 in human esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2013;14:2851–7.

    Article  PubMed  Google Scholar 

  19. Penninkhof F, Grootegoed JA, Blok LJ. Identification of REPS2 as a putative modulator of NF-kappaB activity in prostate cancer cells. Oncogene. 2004;23:5607–15.

    Article  PubMed  CAS  Google Scholar 

  20. He XY, Zhu MM, Zheng J, Wang CY, Zhao XK, Zhang BT, et al. Liver X receptor agonists exert antitumor effects against hepatocellular carcinoma via inducing REPS2 expression. Acta Pharmacol Sin. 2023;44:635–46.

    Article  PubMed  CAS  Google Scholar 

  21. Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J. 2010;427:1–17.

    Article  PubMed  CAS  Google Scholar 

  22. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO. Wnt/beta-catenin signaling in normal and cancer stem cells. Cancers. 2011;3:2050–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ye L, Xiang T, Fan Y, Zhang D, Li L, Zhang C, et al. The 19q13 KRAB Zinc-finger protein ZFP82 suppresses the growth and invasion of esophageal carcinoma cells through inhibiting NF-kappaB transcription and inducing apoptosis. Epigenomics. 2019;11:65–80.

    Article  PubMed  CAS  Google Scholar 

  25. Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, et al. KDM6 demethylases and their roles in human cancers. Front Oncol. 2021;11:779918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen X, Zhang H, Aravindakshan JP, Gotlieb WH, Sairam MR. Anti-proliferative and pro-apoptotic actions of a novel human and mouse ovarian tumor-associated gene OTAG-12: downregulation, alternative splicing and drug sensitization. Oncogene. 2011;30:2874–87.

    Article  PubMed  CAS  Google Scholar 

  27. Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Komuro H, Saihara R, Shinya M, Takita J, Kaneko S, Kaneko M, et al. Identification of side population cells (stem-like cell population) in pediatric solid tumor cell lines. J Pediatr Surg. 2007;42:2040–5.

    Article  PubMed  Google Scholar 

  29. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101:14228–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13:100773.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Zhang X, Huang X, Tang X, Zhang M, Li Z, et al. Tumor stemness score to estimate epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characterization and to predict the prognosis and immunotherapy response in bladder urothelial carcinoma. Stem Cell Res Ther. 2023;14:15.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li F, Song X, Li X, Zhang X, Feng X, Wang L, et al. Lgr5 maintains stemness and regulates cell property in nasopharyngeal carcinoma through Wnt/beta-catenin signaling pathway. Stem Cell Res. 2020;47:101916.

    Article  PubMed  CAS  Google Scholar 

  34. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA. 2004;101:12682–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Szewczyk LM, Lipiec MA, Liszewska E, Meyza K, Urban-Ciecko J, Kondrakiewicz L, et al. Astrocytic beta-catenin signaling via TCF7L2 regulates synapse development and social behavior. Mol Psychiatry. 2024;29:57–73.

    Article  PubMed  CAS  Google Scholar 

  36. Bustamante HA, Gonzalez AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, et al. Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer’s disease. Front Cell Neurosci. 2018;12:126.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB, 3rd. Autophagy: regulation and role in development. Autophagy. 2013;9:951–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77–88.

    Article  PubMed  CAS  Google Scholar 

  39. Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep. 2019;9:10147.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar AV, Mills J, Lapierre LR. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front Cell Dev Biol. 2022;10:793328.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, et al. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 2008;146:368–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mustachio LM, Chelariu-Raicu A, Szekvolgyi L, Roszik J. Targeting KRAS in cancer: promising therapeutic strategies. Cancers. 2021;13:1204.

  43. Ji H, Wang Z, Perera SA, Li D, Liang MC, Zaghlul S, et al. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models. Cancer Res. 2007;67:4933–9.

    Article  PubMed  CAS  Google Scholar 

  44. Wu PK, Park JI. MEK1/2 inhibitors: molecular activity and resistance mechanisms. Semin Oncol. 2015;42:849–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  PubMed  CAS  Google Scholar 

  46. Rouzbahani E, Majidpoor J, Najafi S, Mortezaee K. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother. 2022;156:113906.

    Article  PubMed  CAS  Google Scholar 

  47. Ashrafi A, Akter Z, Modareszadeh P, Modareszadeh P, Berisha E, Alemi PS, et al. Current Landscape of therapeutic resistance in lung cancer and promising strategies to overcome resistance. Cancers. 2022;14:4562.

  48. Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer stem cells and targeting strategies. Cells. 2019;8:926.

  49. Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm. 2022;3:e176.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Karami Fath M, Ebrahimi M, Nourbakhsh E, Zia Hazara A, Mirzaei A, Shafieyari S, et al. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol Res Pract. 2022;237:154010.

    Article  PubMed  CAS  Google Scholar 

  51. Qian L, Mahaffey JP, Alcorn HL, Anderson KV. Tissue-specific roles of Axin2 in the inhibition and activation of Wnt signaling in the mouse embryo. Proc Natl Acad Sci USA. 2011;108:8692–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut. 2007;56:417–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Groenewald W, Lund AH, Gay DM. The role of WNT pathway mutations in cancer development and an overview of therapeutic options. Cells. 2023;12:990.

  54. Del Valle-Perez B, Arques O, Vinyoles M, de Herreros AG, Dunach M. Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol Cell Biol. 2011;31:2877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Adriaenssens E, Ferrari L, Martens S. Orchestration of selective autophagy by cargo receptors. Curr Biol. 2022;32:R1357–71.

    Article  PubMed  CAS  Google Scholar 

  56. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8:86.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Abi-Aad SJ, Zouein J, Chartouni A, Naim N, Kourie HR. Simultaneous inhibition of PD-1 and LAG-3: the future of immunotherapy? Immunotherapy. 2023;15:611–8.

    Article  PubMed  CAS  Google Scholar 

  58. Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: mechanisms and clinical trials. Mol Cancer. 2023;22:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sordo-Bahamonde C, Lorenzo-Herrero S, Gonzalez-Rodriguez AP, Martinez-Perez A, Rodrigo JP, Garcia-Pedrero JM, et al. Chemo-immunotherapy: a new trend in cancer treatment. Cancers. 2023;15:2912.

  60. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12:237–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer. 2013;2013:137414.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by Key Technologies R&D Program of Guangdong Province (2023B1111030003) and the National Key Research and Development Program of China (No. 2022YFA1103900) to LC, Guangdong Basic and Applied Basic Research Foundation (2024A1515030238), and Guangzhou Science and Technology program City-University Joint Funding Project (2024A03J0596) to QZ.

Author information

Authors and Affiliations

Authors

Contributions

LL, SC, and XY performed most of the experiments, analyzed the data, and contributed to the manuscript composition. LL, SC, and XY performed in vitro cell line studies, western blot, real-time PCR, and the public dataset analysis. ZL, RZ, GZ, and ZZ performed animal experiments. QZ and WL performed screening through CRISPR/Cas9 and did bioinformatics and significance calculation. LC and QZ designed experiments, analyzed results, supervised the project, and wrote the manuscript. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Qian Zhou or Liang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All the animal experimental protocols were approved by the Committee of the Institute of Animal Protection and the use of Jinan University. All animal experiments were carried out in accordance with the approved protocols.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, S., Lei, Y. et al. REPS2 attenuates cancer stemness through inhibiting Wnt signaling by autophagy mediated degradation of β-catenin. Oncogene 44, 2942–2955 (2025). https://doi.org/10.1038/s41388-025-03469-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03469-y

Search

Quick links