Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired autophagy by cepharanthine induces immunogenic cell death and enhances anti-PD-1 response in MSS-type colorectal cancer

Abstract

Blockade of the PD-1/PD-L1 axis has demonstrated remarkable success in treating colorectal cancer (CRC) with high microsatellite instability (MSI-H). However, the metastatic CRC with microsatellite stability (MSS) does not respond to this approach. A recent study revealed that rare neoantigens in MSS-type CRC cells can be recognized by antigen-specific CD8+ T cells but not by dendritic cells (DCs). Thus, increasing neoantigen availability by DCs may improve the efficacy of PD-1/PD-L1 inhibitors in MSS-type CRC. Here, we conducted a drug library screening for ‘eat me’ signal, represented by cell surface calreticulin (CRT) exposure, in MSS-type CT26 cells. Cells treated with identified cepharanthine (CEP) presented hallmarks of immunogenic cell death (ICD), characterized by increased cell surface CRT exposure, the release of HMGB1 and ATP, increased susceptibility to phagocytosis, and the ability of vaccines to elicit immunogenic potential in vivo. Mechanistically, CEP blocked autophagic flux by inhibiting autophagsome-lysosome fusion, leading to endoplasmic reticulum (ER) stress and ICD activation. Moreover, CEP upregulated PD-L1 expression on tumour cells, impeding the antitumour immune response in vivo. The combination of CEP and anti-PD-1 therapy provided therapeutic benefit to MSS-type CRC tumours, with an increased proportion of activated DCs and IFNγ+ CD8+ T cells and a decreased proportion of regulatory T cells within the tumour. Based on the above observation, subsequent clinical trials can be conducted to achieve the clinical goal of increasing the survival benefit of MSS-CRC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of CEP as a potent ICD inducer in MSS-type CT26 cells.
Fig. 2: CEP is a bona fide ICD inducer in MSS-type CRC cells.
Fig. 3: CEP-treated MSS-type CRC cells activate DCs.
Fig. 4: CEP inhibits autophagic flux in MSS-type CRC cells.
Fig. 5: CEP triggers ER stress in MSS-type CRC cells.
Fig. 6: CEP induces immune escape in vivo.
Fig. 7: CEP enhances anti-PD-1 treatment efficacy in MSS-type CRC tumours.
Fig. 8: Illustration of the mechanism of CEP-induced ICD and the subsequent activation of the antitumour immune response.

Similar content being viewed by others

Data availability

On reasonable request to the corresponding author.

References

  1. Cohen R, Rousseau B, Vidal J, Colle R, Diaz LA Jr, André T. Immune checkpoint inhibition in colorectal cancer: microsatellite instability and beyond. Target Oncol. 2020;15:11–24.

    Article  PubMed  Google Scholar 

  2. Wang F, Wang ZX, Chen G, Luo HY, Zhang DS, Qiu MZ, et al. Expert opinions on immunotherapy for patients with colorectal cancer. Cancer Commun. 2020;40:467–72.

    Article  Google Scholar 

  3. De’ Angelis GL, Bottarelli L, Azzoni C, De’ Angelis N, Leandro G, Di Mario F, et al. Microsatellite instability in colorectal cancer. Acta Biomed. 2018;89:97–101.

    PubMed  Google Scholar 

  4. Yao YC, Jin Y, Lei XF, Wang ZX, Zhang DS, Wang FH, et al. Impact of mismatch repair or microsatellite status on the prognosis and efficacy to chemotherapy in metastatic colorectal cancer patients: A bi-institutional, propensity score-matched study. J Cancer. 2022;13:2912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jan YH, Tan KT, Chen SJ, Yip TTC, Lu CT, Lam AK. Comprehensive assessment of actionable genomic alterations in primary colorectal carcinoma using targeted next-generation sequencing. Br J Cancer. 2022;127:1304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O, Hauck H, et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. Nat Cancer. 2021;2:1071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol. 2024;15:1390263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, et al. Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull. 2024;69:803–22.

    Article  CAS  Google Scholar 

  9. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  12. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  13. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roelands J, Kuppen PJK, Vermeulen L, Maccalli C, Decock J, Wang E, et al. Immunogenomic classification of colorectal cancer and therapeutic implications. Int J Mol Sci. 2017;18:2229.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.

    Article  CAS  PubMed  Google Scholar 

  16. Medina CB, Ravichandran KS. Do not let death do us part: ‘find-me’ signals in communication between dying cells and the phagocytes. Cell Death Differ. 2016;23:979–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ. 2014;21:26–38.

    Article  CAS  PubMed  Google Scholar 

  18. Huang H, Hu G, Wang C, Xu H, Chen X, Qian A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation. 2014;37:235–46.

    Article  CAS  PubMed  Google Scholar 

  19. Kanamori S, Hiraoka M, Fukuhara N, Oizumi Y, Danjo A, Nakata K, et al. Clinical efficacy of cepharanthin(R)for radiotherapy-induced leukopenia - a nationwide, multicenter, and observational study]. Gan Kagaku Ryoho. 2016;43:1075–9.

    CAS  Google Scholar 

  20. Liang D, Li Q, Du L, Dou G. Pharmacological effects and clinical prospects of cepharanthine. Molecules. 2022;27:8933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu YY, Zhu CY, Ding YX, Wang B, Zhao SF, Lv J, et al. Cepharanthine, a regulator of keap1-Nrf2, inhibits gastric cancer growth through oxidative stress and energy metabolism pathway. Cell Death Discov. 2023;9:450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rattanawong A, Payon V, Limpanasittikul W, Boonkrai C, Mutirangura A, Wonganan P. Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1. Oncol Rep. 2018;39:227–38.

    CAS  PubMed  Google Scholar 

  23. Liu B, Deng JX. Effect of cepharanthine on the stemness of lung squamous cell carcinoma based on network pharmacology and bioinformatics. Biomed Res Int. 2022;2022:5956526.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19:89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iulianna T, Kuldeep N, Eric F. The Achilles’ heel of cancer: targeting tumors via lysosome-induced immunogenic cell death. Cell Death Dis. 2022;13:509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santana-Codina N, Mancias JD, Kimmelman AC. The role of autophagy in cancer. Annu Rev Cancer Biol. 2017;1:19–39.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res. 2010;16:3100–4.

    Article  CAS  PubMed  Google Scholar 

  29. Kapuy O. Mechanism of decision making between autophagy and apoptosis induction upon endoplasmic reticulum stress. Int J Mol Sci. 2024;25:4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11:1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23:487–500.

    Article  CAS  PubMed  Google Scholar 

  32. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fucikova J, Becht E, Iribarren K, Goc J, Remark R, Damotte D, et al. Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res. 2016;76:1746–56.

    Article  CAS  PubMed  Google Scholar 

  35. Ladoire S, Penault-Llorca F, Senovilla L, Dalban C, Enot D, Locher C, et al. Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy. 2015;11:1878–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiao WW, Chen G, Gao YH, Lin JZ, Wu XJ, Luo HL, et al. Effect of neoadjuvant chemoradiotherapy with or without PD-1 antibody sintilimab in pMMR locally advanced rectal cancer: a randomized clinical trial. Cancer Cell. 2024;42:1570–1581.e1574.

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, Yu S, Ma R, Deng L, Yi Y, Niu M, et al. Hypoxia-activated XBP1s recruits HDAC2-EZH2 to engage epigenetic suppression of ΔNp63α expression and promote breast cancer metastasis independent of HIF1α. Cell Death Differ. 2024;31:447–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li DD, Xie B, Wu XJ, Li JJ, Ding Y, Wen XZ, et al. Late-stage inhibition of autophagy enhances calreticulin surface exposure. Oncotarget. 2016;7:80842–54.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shingu T, Fujiwara K, Bögler O, Akiyama Y, Moritake K, Shinojima N, et al. Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy. 2009;5:537–9.

    Article  CAS  PubMed  Google Scholar 

  41. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nomoto S, Imada H, Ohguri T, Yahara K, Kato F, Morioka T, et al. Effect of Cepharanthin in preventing radiation induced normal tissue damage in prostate cancer]. Gan Kagaku Ryoho. 2004;31:1063–6.

    Google Scholar 

  43. Paladhi A, Daripa S, Mondal I, Hira SK. Targeting thymidine phosphorylase alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes antitumor immunity. Front Immunol. 2022;13:988071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the C.Xu laboratories for their helpful advice and discussion.

Funding

This work was supported by the special key projects for Natural Science Foundation of Chongqing (2024NSCQ-KJFZMSX0220), the Scientific Research Grant of Chengdu Municipal Health Commission (2022099), the Medical Research Project of Sichuan Province (Q22011) granted to MZ, and the National Key R&D Programme of China (Grant No. 2023YFC3402100), National Natural Science Foundation of China (Grant No. 92259102), Sichuan Natural Science Foundation of China (Grant No. 2024NSFSC0057), and Chongqing Science and Technology Bureau (Grant No. CSTB2024TIAD-KPX0029) to CX.

Author information

Authors and Affiliations

Contributions

MZ and CX conceptualised and designed the experiment. MZ, JN, ZYY, XML, AY, and CL carried out the experiment. RYZ and XML participated in the data collection. MZ, RYZ, and JL helped data analysis. CX revised the manuscript.

Corresponding author

Correspondence to Chuan Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All methods were performed in accordance with the relevant guidelines and regulations. The mouse experiment was approved by the Animal Welfare Ethics Committee at Chengdu Medical College (IACUC-24-034).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Nie, J., Ye, A. et al. Impaired autophagy by cepharanthine induces immunogenic cell death and enhances anti-PD-1 response in MSS-type colorectal cancer. Oncogene 44, 3171–3182 (2025). https://doi.org/10.1038/s41388-025-03488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03488-9

Search

Quick links