Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ALKBH5 suppresses m6A mRNA modification of FOXM1 to drive Cetuximab resistance in KRAS-mutant colorectal cancer

Abstract

Colorectal cancer (CRC) is a severe health risk, and while Cetuximab is a key treatment, resistance due to KRAS mutations poses a challenge. The role of ALKBH5, often overexpressed in cancers, in KRAS-mutated CRC and its resistance to Cetuximab is not yet fully understood. This research initiates an inquiry from both cellular and animal experimental perspectives, investigating the potential of ALKBH5 to confer resistance to Cetuximab in colorectal cancer cells harboring KRAS mutations. We investigated ALKBH5 expression in clinical samples of CRC with varying responses to Cetuximab and KRAS statuses. Drug-resistant cell lines were developed using incremental drug concentrations, and the effects of ALKBH5 modulation on cell viability and proliferation were assessed using CCK-8 and clonogenic assays. The in vivo impact of ALKBH5 on drug resistance in KRAS-mutant cells was explored. Transcriptome sequencing of ALKBH5 knockdown cells pinpointed genes linked to Cetuximab resistance. We also examined ALKBH5’s regulation of FOXM1 m6A methylation with dual-luciferase and MeRIP assays and conducted FOXM1 functional reversal studies, alongside Western blot analysis of Wnt/β-catenin pathway proteins. Elevated ALKBH5 expression is positively correlated with Cetuximab resistance in KRAS-mutant CRC. ALKBH5 confers Cetuximab resistance to CRC cells in a KRAS-mutation-dependent manner in vitro and in vivo. ALKBH5 regulates FOXM1 expression through m6A demethylation, and FOXM1 can reverse Cetuximab resistance in ALKBH5-modulated KRAS-mutated CRC cells. Additionally, FOXM1 influences the sensitivity of KRAS-mutant tumors to Cetuximab by regulating the Wnt/β-catenin pathway. ALKBH5 plays a crucial role in the resistance of KRAS-mutant CRC to Cetuximab by inhibiting the m6A RNA methylation of FOXM1 and suppressing the activation of the Wnt/β-catenin signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated ALKBH5 expression is positively correlated with Cetuximab resistance in patients with KRAS-mutant CRC.
Fig. 2: ALKBH5 confers Cetuximab resistance to CRC cells in a KRAS-mutation-dependent manner in vitro.
Fig. 3: ALKBH5 contributes to the Cetuximab resistance of KRAS-mutant CRC cells in vivo.
Fig. 4: ALKBH5 modulating FOXM1 expression through m6A demethylation in KRAS-mutated Cetux-resistant CRC cells.
Fig. 5: FOXM1 reverses Cetuximab resistance in ALKBH5-modulated KRAS-mutated CRC cells.
Fig. 6: Final validation of FOXM1’s impact on ALKBH5-regulated sensitivity to Cetuximab in KRAS-nutated tumors in vivo.

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article.

References

  1. Klimeck L, Heisser T, Hoffmeister M, Brenner H. Colorectal cancer: A health and economic problem. Best. Pr. Res Clin. Gastroenterol. 2023;66:101839.

    Article  Google Scholar 

  2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin. Med J. 2021;134:783–91.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023;73:233–54.

    PubMed  Google Scholar 

  4. Shin AE, Giancotti FG, Rustgi AK. Metastatic colorectal cancer: mechanisms and emerging therapeutics. Trends Pharm. Sci. 2023;44:222–36.

    Article  CAS  PubMed  Google Scholar 

  5. Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 2023;20:306–22.

    Article  CAS  PubMed  Google Scholar 

  6. Cremolini C, Rossini D, Dell’Aquila E, Lonardi S, Conca E, Del Re M, et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line Cetuximab and Irinotecan: A Phase 2 single-arm clinical trial. JAMA Oncol. 2019;5:343–50.

    Article  PubMed  Google Scholar 

  7. Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, Ou SI, et al. Adagrasib with or without Cetuximab in colorectal cancer with mutated KRAS G12C. N. Engl. J. Med. 2023;388:44–54.

    Article  CAS  PubMed  Google Scholar 

  8. Kuboki Y, Fakih M, Strickler J, Yaeger R, Masuishi T, Kim EJ, et al. Sotorasib with panitumumab in chemotherapy-refractory KRAS(G12C)-mutated colorectal cancer: a phase 1b trial. Nat. Med. 2024;30:265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J. Hematol. Oncol. 2022;15:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei C, Wang B, Peng D, Zhang X, Li Z, Luo L, et al. Pan-cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including Gliomas. Front. Immunol. 2022;13:849592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, et al. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 2023;165:445–62.

    Article  CAS  PubMed  Google Scholar 

  12. Yang Z, Zhang BL. ALKBH5 in colorectal cancer: an insufficiently explored and controversial research area. Gastroenterology. 2023;165:1581.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang D, Ning J, Okon I, Zheng X, Satyanarayana G, Song P, et al. Suppression of m6A mRNA modification by DNA hypermethylated ALKBH5 aggravates the oncological behavior of KRAS mutation/LKB1 loss lung cancer. Cell Death Dis. 2021;12:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol. 2023;92:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chu XY, Zhu ZM, Chen LB, Wang JH, Su QS, Yang JR, et al. FOXM1 expression correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem. 2012;114:755–62.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A Demethylase ALKBH5 maintains Tumorigenicity of Glioblastoma stem-like cells by sustaining FOXM1 Expression and cell proliferation program. Cancer Cell. 2017;31:591–606.e596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–85.

    Article  CAS  PubMed  Google Scholar 

  18. Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, Zhu VW, et al. Acquired resistance to KRAS(G12C) inhibition in cancer. N. Engl. J. Med. 2021;384:2382–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target Ther. 2021;6:386.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 2022;40:611–25.

    Article  CAS  Google Scholar 

  21. Li Y, Zhang X, Cai J, Ren L, Liu B, Wu M, et al. The pathological tissue expression pattern and clinical significance of m6A-regulatory genes in non-small cell lung cancer. J. Gene Med. 2022;24:e3397.

    Article  CAS  PubMed  Google Scholar 

  22. Nie S, Zhang L, Liu J, Wan Y, Jiang Y, Yang J, et al. ALKBH5-HOXA10 loop-mediated JAK2 m6A demethylation and cisplatin resistance in epithelial ovarian cancer. J. Exp. Clin. Cancer Res: CR. 2021;40:284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abner JJ, Franklin JL, Clement MA, Hinger SA, Allen RM, Liu X, et al. Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m(6)A consensus sequences. Heliyon. 2021;7:e08519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alimardan Z, Abbasi M, Hasanzadeh F, Aghaei M, Khodarahmi G, Kashfi K. Heat shock proteins and cancer: The FoxM1 connection. Biochem Pharm. 2023;211:115505.

    Article  CAS  PubMed  Google Scholar 

  25. Kuai XY, Lei ZY, Liu XS, Shao XY. The Interaction of GLUT1 and FOXM1 leads to a poor prognosis in colorectal cancer. Anti-Cancer Agents Med Chem. 2020;20:941–50.

    Article  CAS  Google Scholar 

  26. Rather TB, Parveiz I, Bhat GA, Rashid G, Wani RA, Khan IY, et al. Evaluation of Forkhead BOX M1 (FOXM1) gene expression in colorectal cancer. Clin. Exp. Med. 2023;23:2385–405.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Zhong H, Li L, Ji W, Zhang X. Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer. Mol. Med Rep. 2016;13:2696–2700.

    Article  CAS  PubMed  Google Scholar 

  28. Valverde A, Peñarando J, Cañas A, López-Sánchez LM, Conde F, Guil-Luna S, et al. The addition of celecoxib improves the antitumor effect of cetuximab in colorectal cancer: role of EGFR-RAS-FOXM1-β- catenin signaling axis. Oncotarget. 2017;8:21754–69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol. Cancer. 2022;21:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong S, Liang S, Cheng Z, Zhang X, Luo L, Li L, et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res. 2022;41:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Su K, Sun X, Jiang Y, Wang L, Hu C, et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res. 2021;40:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, et al. lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat. Med. 2017;23:1331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shan W, Dai C, Zhang H, Han D, Yi Q, Xia B. ACY1 downregulation enhances the radiosensitivity of Cetuximab-resistant colorectal cancer by inactivating the Wnt/β-Catenin signaling pathway. Cancers 2022;14:5704.

  34. Liu YF, Feng ZQ, Chu TH, Yi B, Liu J, Yu H, et al. Andrographolide sensitizes KRAS-mutant colorectal cancer cells to cetuximab by inhibiting the EGFR/AKT and PDGFRβ/AKT signaling pathways. Phytomed: Int J. Phytother. Phytopharmacol. 2024;126:155462.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Hospital-Level Doctoral Fund Project (grant number BS202206).

Author information

Authors and Affiliations

Contributions

HH designed the study. HH, YL, ZL, XM, WH, CL, RM, and RH performed the research and analyzed the data. HH, Y,L and ZL contributed new methods and wrote the paper.

Corresponding author

Correspondence to Hu Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The research protocol was also reviewed and granted approval by the Institutional Ethics Committee of the First Affiliated Hospital of Shihezi University. Written informed consent was secured from every participant prior to their inclusion in the study. The study was executed with the utmost rigor, adhering to the ethical guidelines for animal care, and experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of the First Affiliated Hospital of Shihezi University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Li, Y., Lin, Z. et al. ALKBH5 suppresses m6A mRNA modification of FOXM1 to drive Cetuximab resistance in KRAS-mutant colorectal cancer. Oncogene 44, 3225–3238 (2025). https://doi.org/10.1038/s41388-025-03490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03490-1

Search

Quick links