Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RFX2-BNIP3 axis-driven adaptive mitophagy promotes resistance to ACK1-targeted therapy in non-small cell lung cancer

Abstract

Activated Cdc42-associated kinase 1 (ACK1) is an oncogenic non-receptor kinase that promotes tumor cell survival and impairs T-cell activation. Targeting ACK1 has great promise in cancer control. However, tumor adaptive responses that may limit the anticancer efficacy of ACK1 inhibition (ACK1i) remain unclear. We found that ACK1i treatment triggered the PINK1/PARKIN-mediated adaptive mitophagy by upregulating the mitophagy receptor BNIP3. Mass/Spectrometry and co-immunoprecipitation (Co-IP) results indicated that ACK1 interacted with transcription factor regulatory factor X 2 (RFX2) through its MHR domain, and competitively inhibits RFX2 ubiquitination via the E3 ubiquitin ligase MIB1. Conversely, ACK1i facilitates MIB1-mediated RFX2 ubiquitination and degradation. Moreover, we observed that RFX2 is a transcriptional suppressor of BNIP3 using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Overall, ACK1i treatment causes RFX2 instability and thereby diminishes RFX2’s suppressive effects on BNIP3 transcription, leading to BNIP3 accumulation and the activation of mitophagy pathways. This adaptive mitophagy allows NSCLC cells to survive under ACK1 inhibition, potentially reducing the efficacy of ACK1i. ACK1i combined with mitophagy-inhibiting agents may attain a more accomplished response in NSCLC. In conclusion, ACK1i induced mitophagy through the release of RFX2 inhibition on BNIP3 transcription, thereby driving adaptive resistance. Inhibiting mitophagy sensitizes NSCLC to ACK1i.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACK1i impairs mitochondria and invokes mitophagy in NSCLC cells.
Fig. 2: ACK1 inhibitors elicit mitophagy via the BNIP3/PINK1/PARKIN pathway in NSCLC cells.
Fig. 3: ACK1 and RFX2 interacted in NSCLC cells with the MHR domain of ACK1 responsible for binding to RFX2.
Fig. 4: ACK1i promotes MIB1-mediated ubiquitination and proteasomal degradation of RFX2 in NSCLC cells.
Fig. 5: RFX2 directly binds the BNIP3 promoter and transcriptionally suppresses BNIP3 expression in NSCLC cells.
Fig. 6: ACK1i induces adaptive mitophagy through the downregulation of the RFX2-BNIP3 axis.
Fig. 7: Mitophagy inhibitors increase the response of NSCLC to ACK1 inhibition.
Fig. 8: Mdivi-1 overcomes NSCLC’s tolerance to anti-ACK1 therapy in vivo.

Similar content being viewed by others

Data availability

Public data used in this work can be acquired from (TCGA, https://www.cancer.gov/tcga/). The raw experimental data and analysis codes supporting the conclusions of this article will be made available by the corresponding author.

References

  1. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17:637–58.

    Article  CAS  PubMed  Google Scholar 

  2. Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19:499–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene. 2015;34:4162–7.

    Article  CAS  PubMed  Google Scholar 

  4. van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci USA. 2005;102:15901–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhu J, Liu Y, Zhao M, Cao K, Ma J, Peng S. Identification of downstream signaling cascades of ACK1 and prognostic classifiers in non-small cell lung cancer. Aging. 2021;13:4482–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu F, Liu H, Xie X, Mei J, Wang M. Activated cdc42-associated kinase is up-regulated in non-small-cell lung cancer and necessary for FGFR-mediated AKT activation. Mol Carcinog. 2016;55:853–63.

    Article  CAS  PubMed  Google Scholar 

  7. Mendez P, Ramirez JL. Copy number gains of FGFR1 and 3q chromosome in squamous cell carcinoma of the lung. Transl Lung Cancer Res. 2013;2:101–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chua BT, Lim SJ, Tham SC, Poh WJ, Ullrich A. Somatic mutation in the ACK1 ubiquitin association domain enhances oncogenic signaling through EGFR regulation in renal cancer derived cells. Mol Oncol. 2010;4:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahendrarajah N, Borisova ME, Reichardt S, Godmann M, Sellmer A, Mahboobi S, et al. HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cell Signal. 2017;39:9–17.

    Article  CAS  PubMed  Google Scholar 

  10. Kiweler N, Brill B, Wirth M, Breuksch I, Laguna T, Dietrich C, et al. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol. 2018;92:2227–43.

    Article  CAS  PubMed  Google Scholar 

  11. Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One. 2010;5:e9646.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mahajan NP, Whang YE, Mohler JL, Earp HS. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 2005;65:10514–23.

    Article  CAS  PubMed  Google Scholar 

  13. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci USA. 2007;104:8438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nonami A, Sattler M, Weisberg E, Liu Q, Zhang J, Patricelli MP, et al. Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach. Blood. 2015;125:3133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahendrarajah N, Paulus R, Kramer OH. Histone deacetylase inhibitors induce proteolysis of activated CDC42-associated kinase-1 in leukemic cells. J Cancer Res Clin Oncol. 2016;142:2263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yokoyama N, Lougheed J, Miller WT. Phosphorylation of WASP by the Cdc42-associated kinase ACK1: dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem. 2005;280:42219–26.

    Article  CAS  PubMed  Google Scholar 

  17. Mahajan K, Malla P, Lawrence HR, Chen Z, Kumar-Sinha C, Malik R, et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer Cell. 2017;31:790–803.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chouhan S, Sridaran D, Weimholt C, Luo J, Li T, Hodgson MC, et al. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis. Nat Commun. 2024;15:5629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chouhan S, Sawant M, Weimholt C, Luo J, Sprung RW, Terrado M, et al. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy. 2023;19:1000–25.

    Article  CAS  PubMed  Google Scholar 

  20. Hu C, Zheng Z, Pang S, Zhu Y, Jie J, Lai Z, et al. Chimeric SFT2D2-TBX19 promotes prostate cancer progression by encoding TBX19-202 protein and stabilizing mitochondrial ATP synthase through ATP5F1A phosphorylation. Adv Sci. 2024;11:e2408426.

    Article  Google Scholar 

  21. Li Q, Zhang T, Song P, Tong L, Feng F, Guo J, et al. Design, synthesis, and evaluation of (R)-8-((Tetrahydrofuran-2-yl)methyl)pyrido[2,3-d]pyrimidin-7-ones as novel selective ACK1 inhibitors to combat acquired resistance to the third-generation EGFR inhibitor. J Med Chem. 2023;66:6905–21.

    Article  CAS  PubMed  Google Scholar 

  22. Wang A, Pei J, Shuai W, Lin C, Feng L, Wang Y, et al. Small molecules targeting activated Cdc42-associated kinase 1 (ACK1/TNK2) for the treatment of cancers. J Med Chem. 2021;64:16328–48.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar V, Kumar R, Parate S, Danishuddin, Lee G, Kwon M, et al. Identification of activated Cdc42-associated kinase inhibitors as potential anticancer agents using pharmacoinformatic approaches. Biomolecules. 2023;13:217.

  24. Lawrence HR, Mahajan K, Luo Y, Zhang D, Tindall N, Huseyin M, et al. Development of novel ACK1/TNK2 inhibitors using a fragment-based approach. J Med Chem. 2015;58:2746–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phatak SS, Zhang S. A novel multi-modal drug repurposing approach for identification of potent ACK1 inhibitors. Pac Symp Biocomput. 2013;29–40.

  26. Sridaran D, Mahajan NP. ACK1/TNK2 kinase: molecular mechanisms and emerging cancer therapeutics. Trends Pharm Sci. 2025;46:62–77.

    Article  CAS  PubMed  Google Scholar 

  27. Saygin C, Giordano G, Shimamoto K, Eisfelder B, Thomas-Toth A, Venkataraman G, et al. Dual targeting of apoptotic and signaling pathways in T-lineage acute lymphoblastic leukemia. Clin Cancer Res. 2023;29:3151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang T, Qu R, Chan S, Lai M, Tong L, Feng F, et al. Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance. Mol Cancer. 2020;19:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pei J, Wang G, Wang A, Wu C, Pan X, Shuai W, et al. Design, synthesis, and antitumor activity of potent and selective EGFR L858R/T790M inhibitors and identification of a combination therapy to overcome acquired resistance in models of non-small-cell lung cancer. J Med Chem. 2023;66:5719–52.

    Article  CAS  PubMed  Google Scholar 

  30. Gu J, Qian L, Zhang G, Mahajan NP, Owonikoko TK, Ramalingam SS, et al. Inhibition of ACK1 delays and overcomes acquired resistance of EGFR mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib. Lung Cancer. 2020;150:26–35.

    Article  PubMed  Google Scholar 

  31. Sridaran D, Chouhan S, Mahajan K, Renganathan A, Weimholt C, Bhagwat S, et al. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun. 2022;13:6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh H, Hwang I, Jang JY, Wu L, Cao D, Yao J, et al. Therapy-Induced Transdifferentiation Promotes Glioma Growth Independent of EGFR Signaling. Cancer Res. 2021;81:1528–39.

    Article  CAS  PubMed  Google Scholar 

  33. Bonsignore G, Martinotti S, Ranzato E. Endoplasmic reticulum stress and cancer: could unfolded protein response be a druggable target for cancer therapy? Int J Mol Sci. 2023;24:1566.

  34. Sniegocka M, Liccardo F, Fazi F, Masciarelli S. Understanding ER homeostasis and the UPR to enhance treatment efficacy of acute myeloid leukemia. Drug Resist Updat. 2022;64:100853.

    Article  CAS  PubMed  Google Scholar 

  35. Chern YJ, Tai IT. Adaptive response of resistant cancer cells to chemotherapy. Cancer Biol Med. 2020;17:842–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    Article  CAS  PubMed  Google Scholar 

  37. Alexa-Stratulat T, Pesic M, Gasparovic AC, Trougakos IP, Riganti C. What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat. 2019;46:100643.

    Article  PubMed  Google Scholar 

  38. Zhu J, Cao K, Zhao M, Ma K, Jiang X, Bai Y, et al. Improvement of ACK1-targeted therapy efficacy in lung adenocarcinoma using chloroquine or bafilomycin A1. Mol Med. 2023;29:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev. 2023;103:2349–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gustafsson AB, Dorn GW. 2nd. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process. Physiol Rev. 2019;99:853–92.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, et al. BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem. 2016;291:21616–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell. 2021;56:881–905.

    Article  CAS  PubMed  Google Scholar 

  44. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12:9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiu YH, Zhang TS, Wang XW, Wang MY, Zhao WX, Zhou HM, et al. Mitochondria autophagy: a potential target for cancer therapy. J Drug Target. 2021;29:576–91.

    Article  CAS  PubMed  Google Scholar 

  46. Song C, Pan S, Zhang J, Li N, Geng Q. Mitophagy: a novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 2022;55:e13327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics. 2023;13:736–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanaka A, Youle RJ. A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell. 2008;29:409–10.

    Article  CAS  PubMed  Google Scholar 

  49. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996;271:2185–92.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu J, Liu Y, Ao H, Liu M, Zhao M, Ma J. Comprehensive analysis of the immune implication of ACK1 gene in non-small cell lung cancer. Front Oncol. 2020;10:1132.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tan DS, Haaland B, Gan JM, Tham SC, Sinha I, Tan EH, et al. Bosutinib inhibits migration and invasion via ACK1 in KRAS mutant non-small cell lung cancer. Mol Cancer. 2014;13:13.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yan C, Li TS. Dual role of mitophagy in cancer drug resistance. Anticancer Res. 2018;38:617–21.

    CAS  PubMed  Google Scholar 

  53. Wang H, Liang Y, Zhang T, Yu X, Song X, Chen Y, et al. C-IGF1R encoded by cIGF1R acts as a molecular switch to restrict mitophagy of drug-tolerant persister tumour cells in non-small cell lung cancer. Cell Death Differ. 2023;30:2365–81.

  54. Glytsou C, Chen X, Zacharioudakis E, Al-Santli W, Zhou H, Nadorp B, et al. Mitophagy promotes resistance to BH3 mimetics in acute myeloid leukemia. Cancer Discov. 2023;13:1656–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19:39–56.

    Article  CAS  PubMed  Google Scholar 

  56. Xie XQ, Yang Y, Wang Q, Liu HF, Fang XY, Li CL, et al. Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Res. 2023;33:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu M, Fan Y, Li D, Han B, Meng Y, Chen F, et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis. Mol Oncol. 2021;15:2084–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ke S, Zhou T, Yang P, Wang Y, Zhang P, Chen K, et al. Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. Int J Nanomed. 2017;12:2531–51.

    Article  CAS  Google Scholar 

  59. Chen J, Zhou C, Yi J, Sun J, Xie B, Zhang Z, et al. Metformin and arsenic trioxide synergize to trigger Parkin/pink1-dependent mitophagic cell death in human cervical cancer HeLa cells. J Cancer. 2021;12:6310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Galasso C, Nuzzo G, Brunet C, Ianora A, Sardo A, Fontana A, et al. The marine dinoflagellate alexandrium minutum activates a mitophagic pathway in human lung cancer cells. Mar Drugs. 2018;16:502.

  61. Peng HH, Yang HC, Rupa D, Yen CH, Chiu YW, Yang WJ, et al. ACK1 upregulated the proliferation of head and neck squamous cell carcinoma cells by promoting p27 phosphorylation and degradation. J Cell Commun Signal. 2022;16:567–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhu J, Peng Z, Tian X, Wu T, Sun A, Yang W, et al. Activation of E3 ubiquitin ligase WWP2 by non-receptor tyrosine kinase ACK1. IUBMB Life. 2023;75:595–608.

    Article  CAS  PubMed  Google Scholar 

  63. Wu Y, Hu X, Li Z, Wang M, Li S, Wang X, et al. Transcription factor RFX2 is a key regulator of mouse spermiogenesis. Sci Rep. 2016;6:20435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khoyratty TE, Ai Z, Ballesteros I, Eames HL, Mathie S, Martin-Salamanca S, et al. Distinct transcription factor networks control neutrophil-driven inflammation. Nat Immunol. 2021;22:1093–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu F, Wu Y, Yang Q, Cheng Y, Xu J, Zhang Y, et al. Engineered extracellular vesicles with SHP2 high expression promote mitophagy for Alzheimer’s disease treatment. Adv Mater. 2022;34:e2207107.

    Article  PubMed  Google Scholar 

  66. Meier JA, Larner AC. Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol. 2014;26:20–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qu X, Pan P, Cao S, Ma Y, Yang J, Gao H, et al. Immp2l Deficiency Induced Granulosa Cell Senescence Through STAT1/ATF4 Mediated UPR(mt) and STAT1/(ATF4)/HIF1alpha/BNIP3 Mediated Mitophagy: Prevented by Enocyanin. Int J Mol Sci. 2024;25:11122.

  68. Zhu L, Wang Z, Sun X, Yu J, Li T, Zhao H, et al. STAT3/Mitophagy axis coordinates macrophage NLRP3 inflammasome activation and inflammatory bone loss. J Bone Min Res. 2023;38:335–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [82172786], Heilongjiang Provincial Natural Science Foundation of China [ZD2024H003], Beijing Xisike Clinical Oncology Foundation (Y-2024AZ(EGFR) MS-0187), the Climbing Program of Harbin Medical University Cancer Hospital [PDYS2024-02] and the National Cancer Center Climbing Fund of China [NCC201908B06].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data preparation, collection, and analysis were performed by Kui Cao, Shenshui Wei, Tianjiao Ma, Jinhong Zhu, Jianqun Ma, Hongxue Meng, Xinxin Yang, Mengdi Lu, Yuning Wang, Xiangrong He. Jinhong Zhu and Mengdi Lu accessed and verified the underlying data. Reconciliation of underlying data was solved by Jianqun Ma and Jinhong Zhu. The draft of the manuscript was written by Jinhong Zhu, Kui Cao, and Jianqun Ma. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianqun Ma or Jinhong Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, K., Wei, S., Ma, T. et al. RFX2-BNIP3 axis-driven adaptive mitophagy promotes resistance to ACK1-targeted therapy in non-small cell lung cancer. Oncogene 44, 3461–3475 (2025). https://doi.org/10.1038/s41388-025-03502-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03502-0

Search

Quick links