Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Of travelling homeoproteins and medulloblastomas

Abstract

Medulloblastomas are the most common solid paediatric cancers. Their prognosis largely depends on tumour subtype and expression level of transcription factor such as Orthodenticle homeobox 2 (OTX2). OTX2 is an homeoprotein that maintains stemness and initiates oncogenic pathways. Additionally, as many other homeoproteins, OTX2 is able to travel between cells and to modify the transcriptional activity of recipient ones. After identifying travelling proteins in in vivo models, a systematic review of the literature highlighted that at least eleven travelling homeoproteins are associated with medulloblastoma: Cut like homeobox 1 (CUX1), Engrailed homeobox 1 and 2 (EN1 and EN2), Insulin gene enhancer protein ISL-1 (ISL1), LIM homeobox 1 (LHX1), Homeobox protein Nkx-2.2 (NKX2.2), OTX2, Paired box protein Pax-5,6 and 8 (PAX5, PAX6 and PAX8), as well as POU domain, class 5, transcription factor 1 (POU5F1). Overexpression of some of these homeoprotein-coding gene including OTX2 and POU5F1 was found to be associated with poor prognosis, while overexpression of PAX8 seems to have a protective effect, with a significantly better overall and progression-free survival. Research efforts to better understand the transfer mechanisms and intracellular targets of these transcription factors may offer a new range of therapeutics tools, by interfering with these roaming oncoproteins to circumscribe their associated chain reaction of genetic deregulation, or by providing protective homeoprotein supplementation with the aim of stemming tumour development by direct cancer cell penetration and reprograming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of homeoproteins intercellular travel.
Fig. 2: Known non-cell autonomous roles of OTX2.
Fig. 3: Schematic representation of OTX2 levels during development and its association with medulloblastoma genesis.
Fig. 4: Interactions between homeoproteins and SHH, group 3 and group 4 medulloblastoma pathways.
Fig. 5: Different known non-cell autonomous mechanisms of other homeoproteins in vivo.
Fig. 6: Putative Pen and GAG sequences of travelling homeoproteins present in medulloblastomas.

Similar content being viewed by others

References

  1. Kattner P, Strobel H, Khoshnevis N, Grunert M, Bartholomae S, Pruss M, et al. Compare and contrast: pediatric cancer versus adult malignancies. Cancer Metastasis Rev. 2019;38:673–82.

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23:1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, Erickson AW, et al. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature. 2022;609:1021–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017;18:958–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, et al. The OTX2 gene induces tumor growth and triggers leptomeningeal metastasis by regulating the mTORC2 signaling pathway in group 3 medulloblastomas. Int J Mol Sci. 2024;25:4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adamson DC, Shi Q, Wortham M, Northcott PA, Di C, Duncan CG, et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 2010;70:181–91.

    Article  CAS  PubMed  Google Scholar 

  7. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269:10444–50.

    Article  CAS  PubMed  Google Scholar 

  8. Dupont E, Prochiantz A, Joliot A. Identification of a signal peptide for unconventional secretion. J Biol Chem. 2007;282:8994–9000.

    Article  CAS  PubMed  Google Scholar 

  9. Rebsam A, Mason CA. Otx2’s incredible journey. Cell. 2008;134:386–7.

    Article  CAS  PubMed  Google Scholar 

  10. Lee EJ, Kim N, Park JW, Kang KH, Kim WI, Sim NS, et al. Global analysis of intercellular homeodomain protein transfer. Cell Rep. 2019;28:712–722.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134:508–20.

    Article  CAS  PubMed  Google Scholar 

  12. Kim HT, Kim SJ, Sohn YI, Paik SS, Caplette R, Simonutti M, et al. Mitochondrial protection by exogenous Otx2 in mouse retinal neurons. Cell Rep. 2015;13:990–1002.

    Article  CAS  PubMed  Google Scholar 

  13. Lebœuf M, Vargas-Abonce SE, Pezé-Hedsieck E, Dupont E, Jimenez-Alonso L, Moya KL, et al. ENGRAILED-1 transcription factor has a paracrine neurotrophic activity on adult spinal α-motoneurons. EMBO Rep. 2023;24:e56525.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Michiels EM, Oussoren E, Van Groenigen M, Pauws E, Bossuyt PM, Voûte PA, et al. Genes differentially expressed in medulloblastoma and fetal brain. Physiol Genomics. 1999;1:83–91.

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Labak CM, Jain N, Purvis IJ, Guda MR, Bach SE, et al. OTX2 expression contributes to proliferation and progression in Myc-amplified medulloblastoma. Am J Cancer Res. 2017;7:647–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boon K, Eberhart CG, Riggins GJ. Genomic amplification of orthodenticle homologue 2 in medulloblastomas. Cancer Res. 2005;65:703–7.

    Article  CAS  PubMed  Google Scholar 

  17. de Haas T, Oussoren E, Grajkowska W, Perek-Polnik M, Popovic M, Zadravec-Zaletel L, et al. OTX1 and OTX2 expression correlates with the clinicopathologic classification of medulloblastomas. J Neuropathol Exp Neurol. 2006;65:176–86.

    Article  PubMed  Google Scholar 

  18. Di C, Liao S, Adamson DC, Parrett TJ, Broderick DK, Shi Q, et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 2005;65:919–24.

    Article  CAS  PubMed  Google Scholar 

  19. McLendon RE, Adekunle A, Rajaram V, Koçak M, Blaney SM. Embryonal central nervous system neoplasms arising in infants and young children: a pediatric brain tumor consortium study. Arch Pathol Lab Med. 2011;135:984–93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blake C, Widmeyer K, DAquila K, Mochizuki A, Smolarek TA, Pillay-Smiley N, et al. 14q22.3 duplication including OTX2 in a girl with medulloblastoma: A case report with literature review. Am J Med Genet A. 2024;194:e63604.

    Article  PubMed  Google Scholar 

  21. Figueira Muoio VM, Uno M, Oba-Shinjo S, da Silva R, Araújo Pereira BJ, Clara C, et al. OTX1 and OTX2 genes in medulloblastoma. World Neurosurg. 2019;127:e58–64.

    Article  PubMed  Google Scholar 

  22. El Nagar S, Chakroun A, Le Greneur C, Figarella-Branger D, Di Meglio T, Lamonerie T, et al. Otx2 promotes granule cell precursor proliferation and Shh-dependent medulloblastoma maintenance in vivo. Oncogenesis. 2018;7:60.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bai RY, Staedtke V, Lidov HG, Eberhart CG, Riggins GJ. OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res. 2012;72:5988–6001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bunt J, Hasselt NE, Zwijnenburg DA, Hamdi M, Koster J, Versteeg R, et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int J Cancer. 2012;131:E21–32.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.

    Article  CAS  PubMed  Google Scholar 

  26. Roussel MF, Robinson GW. Role of MYC in medulloblastoma. Cold Spring Harb Perspect Med. 2013;3:a014308.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Northcott PA, Shih DJH, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tissue expression of ISL1 - Staining in cerebellum - The Human Protein Atlas. 2024. https://www.proteinatlas.org/ENSG00000016082-ISL1/tissue/cerebellum

  29. Kozmik Z, Sure U, Rüedi D, Busslinger M, Aguzzi A. Deregulated expression of PAX5 in medulloblastoma. Proc Natl Acad Sci USA. 1995;92:5709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Czapiewski P, Gorczynski A, Radecka K, Wiewiora C, Haybaeck J, Adam P, et al. Expression of SOX11, PAX5, TTF-1 and ISL-1 in medulloblastoma. Pathol Res Pract. 2016;212:965–71.

    Article  CAS  PubMed  Google Scholar 

  31. Harter PN, Baumgarten P, Zinke J, Schilling K, Baader S, Hartmetz AK, et al. Paired box gene 8 (PAX8) expression is associated with sonic hedgehog (SHH)/wingless int (WNT) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathol Appl Neurobiol. 2015;41:165–79.

    Article  CAS  PubMed  Google Scholar 

  32. Steinbach JP, Kozmik Z, Pfeffer P, Aguzzi A. Overexpression of Pax5 is not sufficient for neoplastic transformation of mouse neuroectoderm. Int J Cancer. 2001;93:459–67.

    Article  CAS  PubMed  Google Scholar 

  33. Rodini CO, Suzuki DE, Saba-Silva N, Cappellano A, de Souza JES, Cavalheiro S, et al. Expression analysis of stem cell-related genes reveal OCT4 as a predictor of poor clinical outcome in medulloblastoma. J Neurooncol. 2012;106:71–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, et al. CUX1, A controversial player in tumor development. Front Oncol. 2020;10:738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Topka S, Glassmann A, Weisheit G, Schüller U, Schilling K. The transcription factor Cux1 in cerebellar granule cell development and medulloblastoma pathogenesis. Cerebellum Lond Engl. 2014;13:698–712.

    Article  CAS  Google Scholar 

  36. Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S, et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046–52.

    Article  CAS  PubMed  Google Scholar 

  37. Shahi MH, Afzal M, Sinha S, Eberhart CG, Rey JA, Fan X, et al. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma. BMC Cancer. 2010;10:614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burger MC, Brucker DP, Baumgarten P, Ronellenfitsch MW, Wanka C, Hasselblatt M, et al. PAX2 is an antiapoptotic molecule with deregulated expression in medulloblastoma. Int J Oncol. 2012;41:235–41.

    CAS  PubMed  Google Scholar 

  39. Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W, et al. LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci USA. 2007;104:13182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mumert M, Dubuc A, Wu X, Northcott PA, Chin SS, Pedone CA, et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res. 2012;72:4944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu S, Chen K, Yin M, Wu Z, Wu Y. Proteomic profiling of isogenic primary and metastatic medulloblastoma cell lines reveals differential expression of key metastatic factors. J Proteom. 2017;160:55–63.

    Article  CAS  Google Scholar 

  42. Yamamoto M, Ong ALC, Shinozuka T, Shirai M, Sasai N. Manipulation of signal gradient and transcription factors recapitulates: multiple hypothalamic identities. Stem Cells. 2023;41:453–67.

    Article  CAS  PubMed  Google Scholar 

  43. Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, et al. The neurodevelopmental and molecular landscape of medulloblastoma subgroups: current targets and the potential for combined therapies. Cancers. 2023;15:3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan IL, Wojcinski A, Rallapalli H, Lao Z, Sanghrajka RM, Stephen D, et al. Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proc Natl Acad Sci USA. 2018;115:3392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vincent S, Turque N, Plaza S, Dhellemmes P, Hladky J, Assaker R, et al. Differential expression between PAX-6 and EN proteins in medulloblastoma. Int J Oncol. 1996;8:901–10.

    CAS  PubMed  Google Scholar 

  46. Layalle S, Volovitch M, Mugat B, Bonneaud N, Parmentier ML, Prochiantz A, et al. Engrailed homeoprotein acts as a signaling molecule in the developing fly. Dev Camb Engl. 2011;138:2315–23.

    CAS  Google Scholar 

  47. Amblard I, Thauvin M, Rampon C, Queguiner I, Pak VV, Belousov V, et al. H2O2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum. Commun Biol. 2020;3:536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brunet I, Weinl C, Piper M, Trembleau A, Volovitch M, Harris W, et al. The transcription factor Engrailed-2 guides retinal axons. Nature. 2005;438:94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wizenmann A, Brunet I, Lam J, Sonnier L, Beurdeley M, Zarbalis K, et al. Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. Neuron. 2009;64:355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim N, Min KW, Kang KH, Lee EJ, Kim HT, Moon K, et al. Regulation of retinal axon growth by secreted Vax1 homeodomain protein. eLife. 2014;3:e02671.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rekaik H, Blaudin de Thé FX, Fuchs J, Massiani-Beaudoin O, Prochiantz A, Joshi RL. Engrailed homeoprotein protects mesencephalic dopaminergic neurons from oxidative stress. Cell Rep. 2015;13:242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, et al. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Dev Camb Engl. 2011;138:4991–5001.

    Google Scholar 

  53. Lesaffre B, Joliot A, Prochiantz A, Volovitch M. Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Dev. 2007;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kaddour H, Coppola E, Di Nardo AA, Le Poupon C, Mailly P, Wizenmann A, et al. Extracellular Pax6 regulates tangential Cajal-Retzius cell migration in the developing mouse neocortex. Cereb Cortex. 2020;30:465–75.

    CAS  PubMed  Google Scholar 

  55. Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol. 2013;378:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  57. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461:649–643.

    Article  CAS  PubMed  Google Scholar 

  58. Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene. 2008;412:84–94.

    Article  CAS  PubMed  Google Scholar 

  59. Spatazza J, Lee HHC, Di Nardo AA, Tibaldi L, Joliot A, Hensch TK, et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 2013;3:1815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beurdeley M, Spatazza J, Lee HHC, Sugiyama S, Bernard C, Di Nardo AA, et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci. 2012;32:9429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arterioscler J Am Heart Assoc Inc. 1989;9:21–32.

    CAS  Google Scholar 

  62. Prochiantz A, Di Nardo AA. Homeoprotein signaling in the developing and adult nervous system. Neuron. 2015;85:911–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee HHC, Bernard C, Ye Z, Acampora D, Simeone A, Prochiantz A, et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol Psychiatry. 2017;22:680–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dom G, Shaw-Jackson C, Matis C, Bouffioux O, Picard JJ, Prochiantz A, et al. Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. Nucleic Acids Res. 2003;31:556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

EV held a doctoral grant from the “Fonds pour la Recherche dans l’Industrie et l’Agriculture » (Fonds de la Recherche Scientifique, Belgium). Work in the FC laboratory (including EV and FK) was supported by grants from the « Fonds spéciaux de recherche » (FSR) of the Université catholique de Louvain, by « Projet de recherche (PDR) » fundings #T.0117.13 and #T.0039.21 and an « Equipement (EQP) » funding #U.N027.14 of the Fonds de la Recherche Scientifique (F.R.S.-FNRS, Belgium), by the « Actions de Recherche Concertées (ARC) » #17/22-079 of the « Direction générale de l’Enseignement non obligatoire et de la Recherche scientifique—Direction de la Recherche scientifique—Communauté française de Belgique » and granted by the « Académie universitaire ‘Louvain’ » and by the Association Belge contre les Maladies neuro-Musculaires (ABMM). FC is a Research Director of the F.R.S.-FNRS. Figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

EV and FC drafted the manuscript. EV and FK drafted the figures. EV, FK and FC reviewed the manuscript.

Corresponding author

Correspondence to Eric Vigneul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneul, E., Krins, F. & Clotman, F. Of travelling homeoproteins and medulloblastomas. Oncogene 44, 3043–3051 (2025). https://doi.org/10.1038/s41388-025-03523-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03523-9

Search

Quick links