Abstract
Medulloblastomas are the most common solid paediatric cancers. Their prognosis largely depends on tumour subtype and expression level of transcription factor such as Orthodenticle homeobox 2 (OTX2). OTX2 is an homeoprotein that maintains stemness and initiates oncogenic pathways. Additionally, as many other homeoproteins, OTX2 is able to travel between cells and to modify the transcriptional activity of recipient ones. After identifying travelling proteins in in vivo models, a systematic review of the literature highlighted that at least eleven travelling homeoproteins are associated with medulloblastoma: Cut like homeobox 1 (CUX1), Engrailed homeobox 1 and 2 (EN1 and EN2), Insulin gene enhancer protein ISL-1 (ISL1), LIM homeobox 1 (LHX1), Homeobox protein Nkx-2.2 (NKX2.2), OTX2, Paired box protein Pax-5,6 and 8 (PAX5, PAX6 and PAX8), as well as POU domain, class 5, transcription factor 1 (POU5F1). Overexpression of some of these homeoprotein-coding gene including OTX2 and POU5F1 was found to be associated with poor prognosis, while overexpression of PAX8 seems to have a protective effect, with a significantly better overall and progression-free survival. Research efforts to better understand the transfer mechanisms and intracellular targets of these transcription factors may offer a new range of therapeutics tools, by interfering with these roaming oncoproteins to circumscribe their associated chain reaction of genetic deregulation, or by providing protective homeoprotein supplementation with the aim of stemming tumour development by direct cancer cell penetration and reprograming.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Kattner P, Strobel H, Khoshnevis N, Grunert M, Bartholomae S, Pruss M, et al. Compare and contrast: pediatric cancer versus adult malignancies. Cancer Metastasis Rev. 2019;38:673–82.
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021;23:1231–51.
Hendrikse LD, Haldipur P, Saulnier O, Millman J, Sjoboen AH, Erickson AW, et al. Failure of human rhombic lip differentiation underlies medulloblastoma formation. Nature. 2022;609:1021–8.
Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017;18:958–71.
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, et al. The OTX2 gene induces tumor growth and triggers leptomeningeal metastasis by regulating the mTORC2 signaling pathway in group 3 medulloblastomas. Int J Mol Sci. 2024;25:4416
Adamson DC, Shi Q, Wortham M, Northcott PA, Di C, Duncan CG, et al. OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 2010;70:181–91.
Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994;269:10444–50.
Dupont E, Prochiantz A, Joliot A. Identification of a signal peptide for unconventional secretion. J Biol Chem. 2007;282:8994–9000.
Rebsam A, Mason CA. Otx2’s incredible journey. Cell. 2008;134:386–7.
Lee EJ, Kim N, Park JW, Kang KH, Kim WI, Sim NS, et al. Global analysis of intercellular homeodomain protein transfer. Cell Rep. 2019;28:712–722.e3.
Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, et al. Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell. 2008;134:508–20.
Kim HT, Kim SJ, Sohn YI, Paik SS, Caplette R, Simonutti M, et al. Mitochondrial protection by exogenous Otx2 in mouse retinal neurons. Cell Rep. 2015;13:990–1002.
Lebœuf M, Vargas-Abonce SE, Pezé-Hedsieck E, Dupont E, Jimenez-Alonso L, Moya KL, et al. ENGRAILED-1 transcription factor has a paracrine neurotrophic activity on adult spinal α-motoneurons. EMBO Rep. 2023;24:e56525.
Michiels EM, Oussoren E, Van Groenigen M, Pauws E, Bossuyt PM, Voûte PA, et al. Genes differentially expressed in medulloblastoma and fetal brain. Physiol Genomics. 1999;1:83–91.
Lu Y, Labak CM, Jain N, Purvis IJ, Guda MR, Bach SE, et al. OTX2 expression contributes to proliferation and progression in Myc-amplified medulloblastoma. Am J Cancer Res. 2017;7:647–56.
Boon K, Eberhart CG, Riggins GJ. Genomic amplification of orthodenticle homologue 2 in medulloblastomas. Cancer Res. 2005;65:703–7.
de Haas T, Oussoren E, Grajkowska W, Perek-Polnik M, Popovic M, Zadravec-Zaletel L, et al. OTX1 and OTX2 expression correlates with the clinicopathologic classification of medulloblastomas. J Neuropathol Exp Neurol. 2006;65:176–86.
Di C, Liao S, Adamson DC, Parrett TJ, Broderick DK, Shi Q, et al. Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 2005;65:919–24.
McLendon RE, Adekunle A, Rajaram V, Koçak M, Blaney SM. Embryonal central nervous system neoplasms arising in infants and young children: a pediatric brain tumor consortium study. Arch Pathol Lab Med. 2011;135:984–93.
Blake C, Widmeyer K, DAquila K, Mochizuki A, Smolarek TA, Pillay-Smiley N, et al. 14q22.3 duplication including OTX2 in a girl with medulloblastoma: A case report with literature review. Am J Med Genet A. 2024;194:e63604.
Figueira Muoio VM, Uno M, Oba-Shinjo S, da Silva R, Araújo Pereira BJ, Clara C, et al. OTX1 and OTX2 genes in medulloblastoma. World Neurosurg. 2019;127:e58–64.
El Nagar S, Chakroun A, Le Greneur C, Figarella-Branger D, Di Meglio T, Lamonerie T, et al. Otx2 promotes granule cell precursor proliferation and Shh-dependent medulloblastoma maintenance in vivo. Oncogenesis. 2018;7:60.
Bai RY, Staedtke V, Lidov HG, Eberhart CG, Riggins GJ. OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res. 2012;72:5988–6001.
Bunt J, Hasselt NE, Zwijnenburg DA, Hamdi M, Koster J, Versteeg R, et al. OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int J Cancer. 2012;131:E21–32.
Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.
Roussel MF, Robinson GW. Role of MYC in medulloblastoma. Cold Spring Harb Perspect Med. 2013;3:a014308.
Northcott PA, Shih DJH, Peacock J, Garzia L, Morrissy AS, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488:49–56.
Tissue expression of ISL1 - Staining in cerebellum - The Human Protein Atlas. 2024. https://www.proteinatlas.org/ENSG00000016082-ISL1/tissue/cerebellum
Kozmik Z, Sure U, Rüedi D, Busslinger M, Aguzzi A. Deregulated expression of PAX5 in medulloblastoma. Proc Natl Acad Sci USA. 1995;92:5709–13.
Czapiewski P, Gorczynski A, Radecka K, Wiewiora C, Haybaeck J, Adam P, et al. Expression of SOX11, PAX5, TTF-1 and ISL-1 in medulloblastoma. Pathol Res Pract. 2016;212:965–71.
Harter PN, Baumgarten P, Zinke J, Schilling K, Baader S, Hartmetz AK, et al. Paired box gene 8 (PAX8) expression is associated with sonic hedgehog (SHH)/wingless int (WNT) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathol Appl Neurobiol. 2015;41:165–79.
Steinbach JP, Kozmik Z, Pfeffer P, Aguzzi A. Overexpression of Pax5 is not sufficient for neoplastic transformation of mouse neuroectoderm. Int J Cancer. 2001;93:459–67.
Rodini CO, Suzuki DE, Saba-Silva N, Cappellano A, de Souza JES, Cavalheiro S, et al. Expression analysis of stem cell-related genes reveal OCT4 as a predictor of poor clinical outcome in medulloblastoma. J Neurooncol. 2012;106:71–9.
Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, et al. CUX1, A controversial player in tumor development. Front Oncol. 2020;10:738.
Topka S, Glassmann A, Weisheit G, Schüller U, Schilling K. The transcription factor Cux1 in cerebellar granule cell development and medulloblastoma pathogenesis. Cerebellum Lond Engl. 2014;13:698–712.
Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S, et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046–52.
Shahi MH, Afzal M, Sinha S, Eberhart CG, Rey JA, Fan X, et al. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma. BMC Cancer. 2010;10:614.
Burger MC, Brucker DP, Baumgarten P, Ronellenfitsch MW, Wanka C, Hasselblatt M, et al. PAX2 is an antiapoptotic molecule with deregulated expression in medulloblastoma. Int J Oncol. 2012;41:235–41.
Zhao Y, Kwan KM, Mailloux CM, Lee WK, Grinberg A, Wurst W, et al. LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactor Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci USA. 2007;104:13182–6.
Mumert M, Dubuc A, Wu X, Northcott PA, Chin SS, Pedone CA, et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res. 2012;72:4944–53.
Gu S, Chen K, Yin M, Wu Z, Wu Y. Proteomic profiling of isogenic primary and metastatic medulloblastoma cell lines reveals differential expression of key metastatic factors. J Proteom. 2017;160:55–63.
Yamamoto M, Ong ALC, Shinozuka T, Shirai M, Sasai N. Manipulation of signal gradient and transcription factors recapitulates: multiple hypothalamic identities. Stem Cells. 2023;41:453–67.
Slika H, Alimonti P, Raj D, Caraway C, Alomari S, Jackson EM, et al. The neurodevelopmental and molecular landscape of medulloblastoma subgroups: current targets and the potential for combined therapies. Cancers. 2023;15:3889.
Tan IL, Wojcinski A, Rallapalli H, Lao Z, Sanghrajka RM, Stephen D, et al. Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proc Natl Acad Sci USA. 2018;115:3392–7.
Vincent S, Turque N, Plaza S, Dhellemmes P, Hladky J, Assaker R, et al. Differential expression between PAX-6 and EN proteins in medulloblastoma. Int J Oncol. 1996;8:901–10.
Layalle S, Volovitch M, Mugat B, Bonneaud N, Parmentier ML, Prochiantz A, et al. Engrailed homeoprotein acts as a signaling molecule in the developing fly. Dev Camb Engl. 2011;138:2315–23.
Amblard I, Thauvin M, Rampon C, Queguiner I, Pak VV, Belousov V, et al. H2O2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum. Commun Biol. 2020;3:536.
Brunet I, Weinl C, Piper M, Trembleau A, Volovitch M, Harris W, et al. The transcription factor Engrailed-2 guides retinal axons. Nature. 2005;438:94–8.
Wizenmann A, Brunet I, Lam J, Sonnier L, Beurdeley M, Zarbalis K, et al. Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. Neuron. 2009;64:355–66.
Kim N, Min KW, Kang KH, Lee EJ, Kim HT, Moon K, et al. Regulation of retinal axon growth by secreted Vax1 homeodomain protein. eLife. 2014;3:e02671.
Rekaik H, Blaudin de Thé FX, Fuchs J, Massiani-Beaudoin O, Prochiantz A, Joshi RL. Engrailed homeoprotein protects mesencephalic dopaminergic neurons from oxidative stress. Cell Rep. 2015;13:242–50.
Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, et al. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Dev Camb Engl. 2011;138:4991–5001.
Lesaffre B, Joliot A, Prochiantz A, Volovitch M. Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish. Neural Dev. 2007;2:2.
Kaddour H, Coppola E, Di Nardo AA, Le Poupon C, Mailly P, Wizenmann A, et al. Extracellular Pax6 regulates tangential Cajal-Retzius cell migration in the developing mouse neocortex. Cereb Cortex. 2020;30:465–75.
Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol. 2013;378:25.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461:649–643.
Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based assays. Gene. 2008;412:84–94.
Spatazza J, Lee HHC, Di Nardo AA, Tibaldi L, Joliot A, Hensch TK, et al. Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep. 2013;3:1815–23.
Beurdeley M, Spatazza J, Lee HHC, Sugiyama S, Bernard C, Di Nardo AA, et al. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci. 2012;32:9429–37.
Cardin AD, Weintraub HJ. Molecular modeling of protein-glycosaminoglycan interactions. Arterioscler J Am Heart Assoc Inc. 1989;9:21–32.
Prochiantz A, Di Nardo AA. Homeoprotein signaling in the developing and adult nervous system. Neuron. 2015;85:911–25.
Lee HHC, Bernard C, Ye Z, Acampora D, Simeone A, Prochiantz A, et al. Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol Psychiatry. 2017;22:680–8.
Dom G, Shaw-Jackson C, Matis C, Bouffioux O, Picard JJ, Prochiantz A, et al. Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. Nucleic Acids Res. 2003;31:556–61.
Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47.
Acknowledgements
EV held a doctoral grant from the “Fonds pour la Recherche dans l’Industrie et l’Agriculture » (Fonds de la Recherche Scientifique, Belgium). Work in the FC laboratory (including EV and FK) was supported by grants from the « Fonds spéciaux de recherche » (FSR) of the Université catholique de Louvain, by « Projet de recherche (PDR) » fundings #T.0117.13 and #T.0039.21 and an « Equipement (EQP) » funding #U.N027.14 of the Fonds de la Recherche Scientifique (F.R.S.-FNRS, Belgium), by the « Actions de Recherche Concertées (ARC) » #17/22-079 of the « Direction générale de l’Enseignement non obligatoire et de la Recherche scientifique—Direction de la Recherche scientifique—Communauté française de Belgique » and granted by the « Académie universitaire ‘Louvain’ » and by the Association Belge contre les Maladies neuro-Musculaires (ABMM). FC is a Research Director of the F.R.S.-FNRS. Figures were created with BioRender.com.
Author information
Authors and Affiliations
Contributions
EV and FC drafted the manuscript. EV and FK drafted the figures. EV, FK and FC reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vigneul, E., Krins, F. & Clotman, F. Of travelling homeoproteins and medulloblastomas. Oncogene 44, 3043–3051 (2025). https://doi.org/10.1038/s41388-025-03523-9
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41388-025-03523-9


