Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NeuroD1 drives a KAT2A-FDFT1 signaling axis to promote cholesterol biosynthesis and hepatocellular carcinoma progression via histone H3K27 acetylation

A Correction to this article was published on 22 September 2025

This article has been updated

Abstract

Abnormal lipid metabolism is one of the hallmarks of cancer. Lipid metabolic reprogramming, which has been observed in various tumors, could participate in tumor occurrence, invasion, and metastasis of tumors by regulating various carcinogenic signaling pathways. However, the molecular mechanism that regulates tumor cell lipid metabolic reprogramming has not been fully elucidated. Recent studies revealed that neurogenic differentiation factor 1 (NeuroD1) is upregulated in a variety of tumor cells, and is associated with tumorigenesis and poor prognosis. However, its role in tumor cell lipid metabolism remains unclear. Here, we found that NeuroD1 is highly expressed in hepatocellular carcinoma (HCC) cells and is associated with tumor cell cholesterol biosynthesis. We found that NeuroD1 enhances HCC cell cholesterol biosynthesis, leading to an increase in their viability. Mechanistically, NeuroD1 binds to the promoter of farnesyl diphosphate farnesyl transferase 1 (FDFT1), thereby activating its transcription activity. Furthermore, NeuroD1 can promote FDFT1 transcription through lysine acetyltransferase 2A-mediated H3K27 acetylation. Subsequently, we found that NeuroD1/FDFT1-mediated cholesterol biosynthesis is critical to the tumorigenic potential of HCC cells. These findings not only identify NeuroD1 as a regulator of lipid metabolism in tumor cells, but also reveal a novel molecular mechanism underlying its carcinogenic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NeuroD1 increases HCC cell lipid metabolism.
Fig. 2: NeuroD1 increases HCC cell cholesterol biosynthesis.
Fig. 3: NeuroD1 positively regulates FDFT1.
Fig. 4: NeuroD1 promotes cholesterol biosynthesis by upregulating FDFT1.
Fig. 5: NeuroD1 directly regulates FDFT1 transcription.
Fig. 6: NeuroD1 induces H3K27Ac in the FDFT1 promoter region and promotes FDFT1 transcription.
Fig. 7: NeuroD1/FDFT1-driven cholesterol biosynthesis is crucial for tumor initiation.
Fig. 8: Schematic diagram showing the role of NeuroD1/FDFT1 axis on HCC cells cholesterol biosynthesis and tumorigenesis.

Similar content being viewed by others

Data availability

All data supporting the findings of this study can be freely accessed by any researcher for non-commercial purposes upon reasonable request.

Change history

  • 15 September 2025

    The original online version of this article was revised:In this article, the order in which the authors appeared in the author list was incorrectly given as Zheng Wu, Wei Duan, Ying Xiong, Jingyi Liu, Xinpeng Wen, Fuqiang Zhao, Debing Xiang, Shourong Wu, Vivi Kasim and Jian Wang where it should have been Zheng Wu, Wei Duan, Ying Xiong, Jingyi Liu, Xinpeng Wen, Fuqiang Zhao, Debing Xiang, Jian Wang, Vivi Kasim, and Shourong Wu. This was a mistake on the publishers end. The publisher apologies for the inconvenience.

  • 22 September 2025

    A Correction to this paper has been published: https://doi.org/10.1038/s41388-025-03574-y

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  2. Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol. 2024;17:6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang K, Wang X, Song C, He Z, Wang R, Xu Y, et al. The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 2023;13:1774–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021;71:333–58.

    PubMed  PubMed Central  Google Scholar 

  5. Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther. 2024;9:75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fendt SM, Lunt SY. Dynamic ROS regulation by TIGAR: balancing anti-cancer and pro-metastasis effects. Cancer Cell. 2020;37:141–42.

    Article  CAS  PubMed  Google Scholar 

  7. Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150:104511.

    Article  CAS  PubMed  Google Scholar 

  8. Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol. 2019;16:748–66.

    Article  CAS  PubMed  Google Scholar 

  9. Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell. 2021;56:1363–93.

    Article  CAS  PubMed  Google Scholar 

  10. Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, et al. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci. 2022;79:472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, et al. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med. 2023;55:1357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol. 2023;16:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sivanand S, Vander Heiden MG. Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell. 2020;37:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21:141–62.

    Article  CAS  PubMed  Google Scholar 

  15. Talifu Z, Liu JY, Pan YZ, Ke H, Zhang CJ, Xu X, et al. In vivo astrocyte-to-neuron reprogramming for central nervous system regeneration: a narrative review. Neural Regen Res. 2023;18:750–55.

    Article  CAS  PubMed  Google Scholar 

  16. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsuda-Ito K, Matsuda T, Nakashima K. Expression level of the reprogramming factor NeuroD1 is critical for neuronal conversion efficiency from different cell types. Sci Rep. 2022;12:17980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pavlinkova G, Smolik O. NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol. 2024;12:1435546.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang P, Duan W, Ruan C, Wang L, Hosea R, Wu Z, et al. NeuroD1-GPX4 signaling leads to ferroptosis resistance in hepatocellular carcinoma. PLoS Genet. 2023;19:e1011098.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lei K, Li W, Huang C, Li Y, Alfason L, Zhao H, et al. Neurogenic differentiation factor 1 promotes colorectal cancer cell proliferation and tumorigenesis by suppressing the p53/p21 axis. Cancer Sci. 2020;111:175–85.

    Article  CAS  PubMed  Google Scholar 

  21. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;513:47–52.

    Article  Google Scholar 

  22. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Costanzo F, Martínez Diez M, Santamaría Nuñez G, Díaz-Hernandéz JI, Genes Robles CM, Díez Pérez J, et al. Promoters of ASCL1- and NEUROD1-dependent genes are specific targets of lurbinectedin in SCLC cells. EMBO Mol Med. 2022;14:e14841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Slaughter MJ, Shanle EK, Khan A, Chua KF, Hong T, Boxer LD, et al. HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep. 2021;34:108638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer. 2021;21:413–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 2022;23:329–49.

    Article  CAS  PubMed  Google Scholar 

  28. Ikonen E, Zhou X. Cholesterol transport between cellular membranes: a balancing act between interconnected lipid fluxes. Dev Cell. 2021;56:1430–36.

    Article  CAS  PubMed  Google Scholar 

  29. Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31:62–76.

    Article  CAS  PubMed  Google Scholar 

  30. Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities. Nat Metab. 2020;2:132–41.

    Article  PubMed  Google Scholar 

  31. Wong LH, Gatta AT, Levine TP. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol. 2019;20:85–101.

    Article  CAS  PubMed  Google Scholar 

  32. Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther. 2022;7:265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuzu OF, Noory MA, Robertson GP. The Role of Cholesterol in Cancer. Cancer Res. 2016;76:2063–070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Norum KR, Berg T, Helgerud P, Drevon CA. Transport of cholesterol. Physiol Rev. 1983;63:1343–419.

    Article  CAS  PubMed  Google Scholar 

  35. Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21:225–45.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20:436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene. 2023;42:3289–302.

    Article  CAS  PubMed  Google Scholar 

  38. Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer. 2021;21:753–66.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Lu LL, Wen D, Liu DL, Dong LL, Gao DM, et al. MiR-612 regulates invadopodia of hepatocellular carcinoma by HADHA-mediated lipid reprogramming. J Hematol Oncol. 2020;13:12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Qin Y, Hou Y, Liu S, Zhu P, Wan X, Zhao M, et al. A novel long non-coding RNA lnc030 maintains breast cancer stem cell stemness by stabilizing SQLE mRNA and increasing cholesterol synthesis. Adv Sci. 2020;8:2002232.

    Article  Google Scholar 

  41. Kalogirou C, Linxweiler J, Schmucker P, Snaebjornsson MT, Schmitz W, Wach S, et al. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 2021;12:5066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Prolif. 2020;53:e12772.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu B, Cao J, Wu B, Hao K, Wang X, Chen X, et al. METTL3 and STAT3 form a positive feedback loop to promote cell metastasis in hepatocellular carcinoma. Cell Commun Signal. 2023;21:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature. 1979;282:615–16.

    Article  CAS  PubMed  Google Scholar 

  45. Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, et al. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol. 2023;16:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu J, Hu W, Yang W, Long Y, Chen K, Li F, et al. Knockdown of SQLE promotes CD8+ T cell infiltration in the tumor microenvironment. Cell Signal. 2024;114:110983.

    Article  CAS  PubMed  Google Scholar 

  47. Gay CM, Stewart CA, Park EM, Diao L, Groves SM, Heeke S, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell. 2021;39:346–60.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, et al. LSD1 and aberrant DNA methylation mediate persistence of enteroendocrine progenitors that support braf-mutant colorectal cancer. Cancer Res. 2021;81:3791–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009;12:1097–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: neuronal proliferation and differentiation. Acta Pharm Sin B. 2024;14:20–37.

    Article  PubMed  Google Scholar 

  51. McKenzie TL, Jiang G, Straubhaar JR, Conrad DG, Shechter I. Molecular cloning, expression, and characterization of the cDNA for the rat hepatic squalene synthase. J Biol Chem. 1992;267:21368–74.

    Article  CAS  PubMed  Google Scholar 

  52. Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874:188394.

    Article  CAS  PubMed  Google Scholar 

  53. Weng ML, Chen WK, Chen XY, Lu H, Sun ZR, Yu Q, et al. Fasting inhibits aerobic glycolysis and proliferation in colorectal cancer via the Fdft1-mediated AKT/mTOR/HIF1α pathway suppression. Nat Commun. 2020;11:1869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen D, Li G, Luo L, Lin T, Chu X, Liu K, et al. Artemisitene induces apoptosis of breast cancer cells by targeting FDFT1 and inhibits the growth of breast cancer patient-derived organoids. Phytomedicine. 2024;135:156155.

    Article  CAS  PubMed  Google Scholar 

  55. Mao X, Wang L, Chen Z, Huang H, Chen J, Su J, et al. SCD1 promotes the stemness of gastric cancer stem cells by inhibiting ferroptosis through the SQLE/cholesterol/mTOR signalling pathway. Int J Biol Macromol. 2024;275:133698.

    Article  CAS  PubMed  Google Scholar 

  56. Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat. 2020;49:100670.

    Article  PubMed  Google Scholar 

  57. Liao JK. Squalene synthase inhibitor lapaquistat acetate: could anything be better than statins?. Circulation. 2011;123:1925–28.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yu D, Liao JK. Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc Res. 2022;118:413–23.

    Article  CAS  PubMed  Google Scholar 

  59. Liu A, Wu Q, Guo J, Ares I, Rodríguez JL, Martínez-Larrañaga MR, et al. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol Ther. 2019;195:54–84.

    Article  CAS  PubMed  Google Scholar 

  60. Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, et al. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med. 2023;55:1982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng WT, Jin X, Xu XE, Yang YS, Ma D, Shao ZM, et al. Inhibition of ACAA1 restrains proliferation and potentiates the response to CDK4/6 inhibitors in triple-negative breast cancer. Cancer Res. 2023;83:1711–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82173029 (SW), 32270778 (VK), and 82372655 (SW)), and the Talent Project of Chongqing University Jiangjin Hospital (2024LJXM005 (JW)).

Author information

Authors and Affiliations

Authors

Contributions

SW, VK, and JW conceived and designed the project, analyzed and interpreted the experimental results, and wrote the manuscript; ZW performed most of the experiments; analyzed and interpreted the experimental results, and wrote the manuscript; WD, YX, JL, XW, FZ, and DX analyzed and interpreted the data. DX and JW collected human clinical samples and performed clinical samples analysis. XW and FZ designed shRNA target sites and analyzed part of the data.

Corresponding authors

Correspondence to Jian Wang, Vivi Kasim or Shourong Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

Animal studies were approved by the Institutional Ethics Committee of Chongqing University Cancer Hospital (Permit No. SYXK-2021-0001). All animal experiments conformed to the Guidelines for the Care and Use of Laboratory Animals of the Chongqing University Cancer Hospital. For clinical HCC samples, prior patients’ written informed consents were obtained. The studies were approved by the Institutional Research Ethics Committee of Chongqing University Cancer Hospital (Permit No. CZLS2021292-A), and conducted in accordance with Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Duan, W., Xiong, Y. et al. NeuroD1 drives a KAT2A-FDFT1 signaling axis to promote cholesterol biosynthesis and hepatocellular carcinoma progression via histone H3K27 acetylation. Oncogene 44, 4017–4031 (2025). https://doi.org/10.1038/s41388-025-03534-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03534-6

Search

Quick links