Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immune evasion from macrophages by NEAT1-induced CD24 in liver cancer

Abstract

The limited efficacy of immune checkpoint inhibitors in hepatocellular carcinoma (HCC) can arise from the involvement of immunosuppressive cells, such as macrophages. In the present study, we found that the long noncoding RNA NEAT1, particularly its short isoform (NEAT1v1) induced the expression of CD24, which is known as an immune checkpoint molecule for macrophages. Mechanistically, NEAT1v1 sponged miR-320a-3p to upregulate the transcription factor SP1, which in turn, activated CD24 transcription. A spheroid co-culture of primary or THP-1-derived macrophages with HCC cells revealed that NEAT1v1 suppressed M1 marker expression and phagocytic activity in macrophages. In a syngeneic subcutaneous model of HCC, Neat1v1 increased the tumor infiltration of M2-like macrophages and induced resistance to anti-Pd-1 antibody, while combination of the anti-Pd-1 and anti-Cd24 antibodies significantly suppressed the tumor growth. Finally, NEAT1, SP1, and CD24 expression increased in tumor tissues from patients with HCC, compared to adjacent normal tissues, whereas miR-320a-3p was significantly downregulated. Moreover, plasma NEAT1 cell-free RNA was significantly decreased after therapeutic intervention. Taken together, NEAT1v1 protects HCC cells from macrophages by sending a “Don’t Eat Me” signal via CD24, and is therefore, a potential target molecule for the treatment and diagnosis of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upregulation of CD24 in liver cancer cells by NEAT1v1.
Fig. 2: Inhibition of phagocytosis by NEAT1v1 through CD24.
Fig. 3: Promotion of M2-like macrophage polarization by NEAT1v1 through CD24.
Fig. 4: Upregulation of CD24 by NEAT1v1 through SP1.
Fig. 5: NEAT1v1-mediated suppression of miR-320a-3p by acting as a ceRNA.
Fig. 6: Promotion of tumor growth and M2-like TAM polarization by Neat1v1.

Similar content being viewed by others

Data availability

All raw data are available in the manuscript and its supplementary files or from the corresponding author upon reasonable request.

References

  1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    PubMed  Google Scholar 

  2. Saleh Y, Abu Hejleh T, Abdelrahim M, Shamseddine A, Chehade L, Alawabdeh T, et al. Hepatocellular carcinoma: the evolving role of systemic therapies as a bridging treatment to liver transplantation. Cancers. 2024;16:2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zarlashat Y, Abbas S, Ghaffar A. Hepatocellular carcinoma: beyond the border of advanced stage therapy. Cancers. 2024;16:2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  5. Abou-Alfa GK, Lau G, Kudo M, Chan SL, Kelley RK, Furuse J, et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 2022;1:EVIDoa2100070.

    Article  PubMed  Google Scholar 

  6. Gordan JD, Kennedy EB, Abou-Alfa GK, Beal E, Finn RS, Gade TP, et al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline update. J Clin Oncol. 2024;42:1830–50.

    Article  CAS  PubMed  Google Scholar 

  7. Arvanitakis K, Koletsa T, Mitroulis I, Germanidis G. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy. Cancers. 2022;14:226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lopez-Yrigoyen M, Cassetta L, Pollard JW. Macrophage targeting in cancer. Ann N Y Acad Sci. 2021;1499:18–41.

    Article  PubMed  Google Scholar 

  9. Wang PC, Hu ZQ, Zhou SL, Yu SY, Mao L, Su S, et al. The spatial distribution of immune cell subpopulations in hepatocellular carcinoma. Cancer Sci. 2022;113:423–31.

    Article  CAS  PubMed  Google Scholar 

  10. Sheng J, Zhang J, Wang L, Tano V, Tang J, Wang X, et al. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny. Gut. 2022;71:1176–91.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou C, Weng J, Liu C, Liu S, Hu Z, Xie X, et al. Disruption of SLFN11 deficiency-induced CCL2 signaling and macrophage M2 polarization potentiates anti-PD-1 therapy efficacy in hepatocellular carcinoma. Gastroenterology. 2023;164:1261–78.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Yao W, Yuan Y, Chen P, Li B, Li J, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66:157–67.

    Article  CAS  PubMed  Google Scholar 

  13. Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, et al. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci Adv. 2023;9:eadg2697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 2011;9:50–63.

    Article  CAS  PubMed  Google Scholar 

  15. Liu AY, Cai Y, Mao Y, Lin Y, Zheng H, Wu T, et al. Twist2 promotes self-renewal of liver cancer stem-like cells by regulating CD24. Carcinogenesis. 2014;35:537–45.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuchiya H, Shiota G. Clinical and biological implications of cancer stem cells in hepatocellular carcinoma. Yonago Acta Med. 2021;64:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther. 2021;17:20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Tian W, Jiang Z, Song Y, Leng X, Yu J. Targeting CD24/Siglec-10 signal pathway for cancer immunotherapy: recent advances and future directions. Cancer Immunol Immunother. 2024;73:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koyama S, Tsuchiya H, Amisaki M, Sakaguchi H, Honjo S, Fujiwara Y, et al. NEAT1 is required for the expression of the liver cancer stem cell marker CD44. Int J Mol Sci. 2020;21:1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sakaguchi H, Tsuchiya H, Kitagawa Y, Tanino T, Yoshida K, Uchida N, et al. NEAT1 confers radioresistance to hepatocellular carcinoma cells by inducing autophagy through GABARAP. Int J Mol Sci. 2022;23:711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsuchiya H, Shinonaga R, Sakaguchi H, Kitagawa Y, Yoshida K, Shiota G. NEAT1 confers radioresistance to hepatocellular carcinoma cells by inducing PINK1/Parkin-mediated mitophagy. Int J Mol Sci. 2022;23:14397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsuchiya H, Shinonaga R, Sakaguchi H, Kitagawa Y, Yoshida K. NEAT1-SOD2 axis confers sorafenib and lenvatinib resistance by activating AKT in liver cancer cell lines. Curr Issues Mol Biol. 2023;45:1073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin L, Wang Y. Extracellular vesicles derived from M2-polarized tumor-associated macrophages promote immune escape in ovarian cancer through NEAT1/miR-101-3p/ZEB1/PD-L1 axis. Cancer Immunol Immunother. 2023;72:743–58.

    Article  CAS  PubMed  Google Scholar 

  26. Heideveld E, Horcas-Lopez M, Lopez-Yrigoyen M, Forrester LM, Cassetta L, Pollard JW. Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol. 2020;632:131.

    Google Scholar 

  27. Yuan W, Zhang Q, Gu D, Lu C, Dixit D, Gimple RC, et al. Dual role of CXCL8 in maintaining the mesenchymal state of glioblastoma stem cells and M2-like tumor-associated macrophages. Clin Cancer Res. 2023;29:3779–92.

    Article  CAS  PubMed  Google Scholar 

  28. Tsai SC, Lin CC, Shih TC, Tseng RJ, Yu MC, Lin YJ, et al. The miR-200b-ZEB1 circuit regulates diverse stemness of human hepatocellular carcinoma. Mol Carcinog. 2017;56:2035–47.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas S, Harding MA, Smith SC, Overdevest JB, Nitz MD, Frierson HF, et al. CD24 is an effector of HIF-1-driven primary tumor growth and metastasis. Cancer Res. 2012;72:5600–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu W, Ma Y, Shankar S, Srivastava RK. Role of SATB2 in human pancreatic cancer: implications in transformation and a promising biomarker. Oncotarget. 2016;7:57783–97.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen J, Li H, Zhang B, Xiong Z, Jin Z, Chen J, et al. ABI2-mediated MEOX2/KLF4-NANOG axis promotes liver cancer stem cell and drives tumour recurrence. Liver Int. 2022;42:2562–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin CY, Tsai CL, Chao A, Lee LY, Chen WC, Tang YH, et al. Nucleophosmin/B23 promotes endometrial cancer cell escape from macrophage phagocytosis by increasing CD24 expression. J Mol Med. 2021;99:1125–37.

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal N, Dancik GM, Goodspeed A, Costello JC, Owens C, Duex JE, et al. GON4L drives cancer growth through a YY1-androgen receptor-CD24 axis. Cancer Res. 2016;76:5175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rauluseviciute I, Riudavets-Puig R, Blanc-Mathieu R, Castro-Mondragon JA, Ferenc K, Kumar V, et al. JASPAR 2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2024;52:D174–D182.

    Article  CAS  PubMed  Google Scholar 

  35. Saleh RO, Alkhafaji AT, Mohammed JS, Bansal P, Kaur H, Ahmad I, et al. LncRNA NEAT1 in the pathogenesis of liver-related diseases. Cell Biochem Funct. 2024;42:e4006.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Huang C, Zhu Z, Hou Y, Huang S, Sun C, et al. lncRNA NEAT1 regulates the proliferation and migration of hepatocellular carcinoma cells by acting as a miR‑320a molecular sponge and targeting L antigen family member 3. Int J Oncol. 2020;57:1001–12.

    CAS  PubMed  Google Scholar 

  37. Zhang W, Yang H, Wang Z, Wu Y, Wang J, Duan G, et al. miR-320a/SP1 negative reciprocal interaction contributes to cell growth and invasion in colorectal cancer. Cancer Cell Int. 2021;21:175.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Benes V, Collier P, Kordes C, Stolte J, Rausch T, Muckentaler MU, et al. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay. Sci Rep. 2015;25:11590.

    Article  Google Scholar 

  39. Portugal J. Mithramycin and its analogs: molecular features and antitumor action. Pharmacol Ther. 2024;260:108672.

    Article  CAS  PubMed  Google Scholar 

  40. Hill J, Shalaby KE, Bihaqi SW, Alansi BH, Barlock B, Parang K, et al. Tolfenamic acid derivatives: a new class of transcriptional modulators with potential therapeutic applications for Alzheimer’s disease and related disorders. Int J Mol Sci. 2023;24:15216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, Suzuki K, et al. A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol. 2013;46:141–52.

    Article  CAS  PubMed  Google Scholar 

  42. Toker J, Iorgulescu JB, Ling AL, Villa GR, Gadet JAMA, Parida L, et al. Clinical importance of the lncRNA NEAT1 in cancer patients treated with immune checkpoint inhibitors. Clin Cancer Res. 2023;29:2226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 2019;10:1495.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Wu Y, Guo L, Yuan S, Sun J, Zhao K, et al. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis. J Nanobiotechnol. 2023;21:98.

    Article  Google Scholar 

  45. Yang Y, Ma S, Ye Z, Zheng Y, Zheng Z, Liu X, et al. NEAT1 in bone marrow mesenchymal stem cell-derived extracellular vesicles promotes melanoma by inducing M2 macrophage polarization. Cancer Gene Ther. 2022;29:1228–39.

    Article  CAS  PubMed  Google Scholar 

  46. Zhen S, Jia Y, Zhao Y, Wang J, Zheng B, Liu T, et al. NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence. Cell Death Discov. 2024;10:131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Li Y, Wu Y, Zhao Y, Hu X, Sun C. The long non-coding RNA NEAT1 promotes the progression of human ovarian cancer through targeting miR-214-3p and regulating angiogenesis. J Ovarian Res. 2023;16:219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tripathi SK, Pal A, Ghosh S, Goel A, Aggarwal R, Banerjee S, et al. LncRNA NEAT1 regulates HCV-induced Hepatocellular carcinoma by modulating the miR-9-BGH3 axis. J Gen Virol. 2022;103.

  49. Zhang H, Yu S, Fei K, Huang Z, Deng S, Xu H. NEAT1 promotes the malignant development of bladder cancer by regulating the miR-101/VEGF-C pathway in vitro and in vivo. BMC Urol. 2022;22:193.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang L, Xie F, Xu W, Xu T, Ni Y, Tao X, et al. Long non-coding RNA XIST accelerates hepatic carcinoma progression by targeting the microRNA-320a/PIK3CA axis. Oncol Lett. 2021;22:801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galbiati S, Bettiga A, Colciago G, Senti C, Trevisani F, Villa G, et al. The long noncoding RNA SUMO1P3 as urinary biomarker for monitoring bladder cancer progression. Front Oncol. 2024;14:1325157.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bozgeyik E, Arslan A, Temiz E, Batar B, Koyuncu I, Tozkir H. miR-320a promotes p53-dependent apoptosis of prostate cancer cells by negatively regulating TP73-AS1 invitro. Biochem Biophys Res Commun. 2022;619:130–6. 2022;619:130–136.

    Article  CAS  PubMed  Google Scholar 

  53. Hao X, Xin R, Dong W. Decreased serum exosomal miR-320a expression is an unfavorable prognostic factor in patients with hepatocellular carcinoma. J Int Med Res. 2020;48:300060519896144.

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Liu DL, Dong LL, Wen D, Shi DM, Zhou J, et al. miR-612 suppresses stem cell-like property of hepatocellular carcinoma cells by modulating Sp1/Nanog signaling. Cell Death Dis. 2016;7:e2377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu S, Bu X, Kan A, Luo L, Xu Y, Chen H, et al. SP1-induced lncRNA DUBR promotes stemness and oxaliplatin resistance of hepatocellular carcinoma via E2F1-CIP2A feedback. Cancer Lett. 2022;528:16–30.

    Article  CAS  PubMed  Google Scholar 

  56. Tsui YM, Ho DW, Sze KM, Lee JM, Lee E, Zhang Q, et al. Sorted-cell sequencing on HCC specimens reveals EPS8L3 as a key player in CD24/CD13/EpCAM-triple positive, stemness-related HCC cells. Cell Mol Gastroenterol Hepatol. 2024;18:101358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mao D, Zhou Z, Chen H, Liu X, Li D, Chen X, et al. Pleckstrin-2 promotes tumour immune escape from NK cells by activating the MT1-MMP-MICA signalling axis in gastric cancer. Cancer Lett. 2023;572:216351.

    Article  CAS  PubMed  Google Scholar 

  58. Cao T, Zhang W, Wang Q, Wang C, Ma W, Zhang C, et al. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells. Cell. 2024;187:2288–2304.e27.

    Article  CAS  PubMed  Google Scholar 

  59. Abdelrahim M, Baker CH, Abbruzzese JL, Safe S. Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst. 2006;98:855–68.

    Article  CAS  PubMed  Google Scholar 

  60. Hou C, Mandal A, Rohr J, Tsodikov OV. Allosteric interference in oncogenic FLI1 and ERG transactions by mithramycins. Structure. 2021;29:404–412.e4.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng YH, Yin P, Xue Q, Yilmaz B, Dawson MI, Bulun SE. Retinoic acid (RA) regulates 17beta-hydroxysteroid dehydrogenase type 2 expression in endometrium: interaction of RA receptors with specificity protein (SP) 1/SP3 for estradiol metabolism. J Clin Endocrinol Metab. 2008;93:1915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Poursharifi P, Schmitt C, Chenier I, Leung YH, Oppong AK, Bai Y, et al. ABHD6 suppression promotes anti-inflammatory polarization of adipose tissue macrophages via 2-monoacylglycerol/PPAR signaling in obese mice. Mol Metab. 2023;78:101822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Y, Chai X, Peng J, Zhu Y, Dong R, He J, et al. Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention. Nat Metab. 2025;7:367–82.

    Article  CAS  PubMed  Google Scholar 

  64. Kay EJ, Paterson K, Riera-Domingo C, Sumpton D, Däbritz JHM, Tardito S, et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat Metab. 2022;4:693–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tharp KM, Kersten K, Maller O, Timblin GA, Stashko C, Canale FP, et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat Cancer. 2024;5:1045–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luo X, Wei Q, Jiang X, Chen N, Zuo X, Zhao H, et al. CSTF3 contributes to platinum resistance in ovarian cancer through alternative polyadenylation of lncRNA NEAT1 and generating the short isoform NEAT1_1. Cell Death Dis. 2024;15:432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu T, Wang H, Fu Z, Wang Z, Wang J, Gan X, et al. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1. Cancer Sci. 2022;113:446–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mirco Castoldi (University Hospital of Düsseldorf) for technical advice on miQPCR. This research was partly performed at Research Initiative Center, Tottori University, and the Tottori Bio Frontier managed by Tottori prefecture. The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

This work was supported by JSPS KAKENHI Grant Number 23K07437 (HT).

Author information

Authors and Affiliations

Authors

Contributions

HT performed most of the experiments, analyzed the data, and wrote the manuscript. TH, NT, and TN contributed to the collection of liver and blood samples and the curation of clinical information. TS and YU conducted immunohistochemistry and its quantitative analysis. HI and YF conceptualized and supervised the project. DN supervised the project, and reviewed and edited the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hiroyuki Tsuchiya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchiya, H., Hanaki, T., Sakabe, T. et al. Immune evasion from macrophages by NEAT1-induced CD24 in liver cancer. Oncogene 44, 3652–3664 (2025). https://doi.org/10.1038/s41388-025-03537-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03537-3

Search

Quick links