Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LGI3 promotes the progression of TFE3-rearranged renal cell carcinoma through GEMIN6/AURKB axis

Abstract

Transcription factor binding to IGHM enhancer 3-rearranged renal cell carcinoma (TFE3-RCC) is characterized by its aggressive nature, limited treatment options, and poor prognosis. However, the downstream targets of TFE3 fusion protein responsible for its tumorigenesis and progression remain unclear. Here, we demonstrated that leucine-rich repeat LGI family member 3 (LGI3) is a direct target of TFE3 fusion protein. TFE3 fusion protein can bind to the promoter of LGI3 and then activate its transcription. Importantly, LGI3 contributes to the proliferation, migration, and invasion of TFE3-RCC. Mechanistically, LGI3 interacts with gem nuclear organelle-associated protein 6 (GEMIN6) and inhibits its degradation via decreasing its ubiquitination. GEMIN6 upregulation promotes the mRNA maturation of Aurora B kinase (AURKB), thereby promoting the progression of TFE3-RCC. Importantly, drugs targeting GEMIN6 or AURKB significantly suppressed the growth of TFE3-RCC cells and organoids. In human TFE3-RCC tissues, LGI3 is highly expressed and positively correlated with GEMIN6 and AURKB. Overall, we revealed a novel mechanism underlying the progression of TFE3-RCC and provided potential new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LGI3 is highly expressed in TFE3-RCC.
Fig. 2: LGI3 is a direct target of TFE3.
Fig. 3: LGI3 mediating the function of TFE3 promotes the progression of TFE3-RCC.
Fig. 4: LGI3 enhances the stability of GEMIN6.
Fig. 5: LGI3 promotes the progression of TFE3-RCC via the GEMIN6/AURKB axis.
Fig. 6: Targeting GEMIN6 and AURKB inhibit the growth of TFE301-1 cells and TFE3-RCC organoids.
Fig. 7: GEMIN6 and AURKB are highly expressed and positively correlated with LGI3 in TFE3-RCC.

Similar content being viewed by others

Data availability

The TCGA data was downloaded from the Genomics Data Commons portal of the National Cancer Institute(https://portal.gdc.cancer.gov/). Data of the West China Hospital was downloaded from the GEO with the identifier GSE167573. Data of Dana-Farber Cancer Institute was downloaded from the GEO with the identifier GSE188885. The transcriptome sequencing data is available via NCBI (https://www.ncbi.nlm.nih.gov/sra/PRJNA1241189). The LC-MS data is available via ProteomeXchange with the identifier PXD061623.

References

  1. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3:17009.

    Article  PubMed  Google Scholar 

  2. Martínez Chanzá N, Xie W, Asim Bilen M, Dzimitrowicz H, Burkart J, Geynisman DM, et al. Cabozantinib in advanced non-clear-cell renal cell carcinoma: a multicentre, retrospective, cohort study. Lancet Oncol. 2019;20:581–90.

    Article  PubMed  Google Scholar 

  3. Kauffman EC, Ricketts CJ, Rais-Bahrami S, Yang Y, Merino MJ, Bottaro DP, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol. 2014;11:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakouny Z, Sadagopan A, Ravi P, Metaferia NY, Li J, AbuHammad S, et al. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep. 2022;38:110190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Magers MJ, Udager AM, Mehra R. MiT family translocation-associated renal cell carcinoma: a contemporary update with emphasis on morphologic, immunophenotypic, and molecular mimics. Arch Pathol Lab Med. 2015;139:1224–33.

    Article  CAS  PubMed  Google Scholar 

  6. Chang IW, Huang HY, Sung MT. Melanotic Xp11 translocation renal cancer: a case with PSF-TFE3 gene fusion and up-regulation of melanogenetic transcripts. Am J Surg Pathol. 2009;33:1894–901.

    Article  PubMed  Google Scholar 

  7. Motyckova G, Weilbaecher KN, Horstmann M, Rieman DJ, Fisher DZ, Fisher DE. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci USA. 2001;98:5798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang XM, Zhang Y, Mannan R, Skala SL, Rangaswamy R, Chinnaiyan A, et al. TRIM63 is a sensitive and specific biomarker for MiT family aberration-associated renal cell carcinoma. Mod Pathol. 2021;34:1596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baba M, Furuya M, Motoshima T, Lang M, Funasaki S, Ma W, et al. TFE3 Xp11.2 translocation renal cell carcinoma mouse model reveals novel therapeutic targets and identifies GPNMB as a diagnostic marker for human disease. Mol Cancer Res. 2019;17:1613–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feng H, Cao S, Fu S, Liu J, Gao Y, Dong Z, et al. NMRK2 is an efficient diagnostic indicator for Xp11.2 translocation renal cell carcinoma. J Pathol. 2024;264:228–40.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Yang L, Lu Y, Liu N, Ma W, Fan H, et al. Up-regulation of NMRK2 mediated by TFE3 fusions is the key for energy metabolism adaption of Xp11.2 translocation renal cell carcinoma. Cancer Lett. 2022;538:215689.

    Article  CAS  PubMed  Google Scholar 

  12. Park WJ, Lim YY, Kwon NS, Baek KJ, Kim DS, Yun HY. Leucine-rich glioma inactivated 3 induces neurite outgrowth through Akt and focal adhesion kinase. Neurochem Res. 2010;35:789–96.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SY, Kim YY, Kim IW, Yun HY, Kim DS. LGI3 promotes human keratinocyte migration in high-glucose environments by increasing the expression of β-catenin. Pharmazie. 2022;77:186–90.

    CAS  PubMed  Google Scholar 

  14. Jeong HS, Jeong YM, Kim J, Lee SH, Choi HR, Park KC, et al. Leucine-rich glioma inactivated 3 is a melanogenic cytokine in human skin. Exp Dermatol. 2014;23:600–2.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HA, Park WJ, Jeong HS, Lee HE, Lee SH, Kwon NS, et al. Leucine-rich glioma inactivated 3 regulates adipogenesis through ADAM23. Biochim Biophys Acta. 2012;1821:914–22.

    Article  CAS  PubMed  Google Scholar 

  16. Rossi MR, Huntoon K, Cowell JK. Differential expression of the LGI and SLIT families of genes in human cancer cells. Gene. 2005;356:85–90.

    Article  CAS  PubMed  Google Scholar 

  17. Kwon NS, Baek KJ, Kim DS, Yun HY. Leucine-rich glioma inactivated 3: Integrative analyses reveal its potential prognostic role in cancer. Mol Med Rep. 2018;17:3993–4002.

    CAS  PubMed  Google Scholar 

  18. Sun G, Chen J, Liang J, Yin X, Zhang M, Yao J, et al. Integrated exome and RNA sequencing of TFE3-translocation renal cell carcinoma. Nat Commun. 2021;12:5262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin J, Liu B, Zhang Y, Lv L, Cheng D, Zhang W, et al. Gemin6 promotes c-Myc stabilisation and non-small cell lung cancer progression via accelerating AURKB mRNA maturation. Clin Transl Med. 2022;12:e811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka M, Homme M, Yamazaki Y, Shimizu R, Takazawa Y, Nakamura T. Modeling alveolar soft part sarcoma unveils novel mechanisms of metastasis. Cancer Res. 2017;77:897–907.

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Ishibashi M, Seimon T, Lee M, Sharma SM, Fitzgerald KA, et al. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ Res. 2009;104:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kozar-Gillan N, Velichkova A, Kanatouris G, Eshed-Eisenbach Y, Steel G, Jaegle M et al. LGI3/2-ADAM23 interactions cluster Kv1 channels in myelinated axons to regulate refractory period. J Cell Biol. 2023;222:e202211031.

  23. Lee SH, Kwon NS, Baek KJ, Yun HY, Kim DS. LGI3 is secreted and binds to ADAM22 via TRIF-dependent NF-κB pathway in response to LPS in human keratinocytes. Cytokine. 2020;126:154872.

    Article  CAS  PubMed  Google Scholar 

  24. Okabayashi S, Kimura N. LGI3 interacts with flotillin-1 to mediate APP trafficking and exosome formation. Neuroreport. 2010;21:606–10.

    Article  CAS  PubMed  Google Scholar 

  25. Tannir NM, Jonasch E, Albiges L, Altinmakas E, Ng CS, Matin SF, et al. Everolimus versus sunitinib prospective evaluation in metastatic non-clear cell renal cell carcinoma (ESPN): a randomized multicenter phase 2 trial. Eur Urol. 2016;69:866–74.

    Article  CAS  PubMed  Google Scholar 

  26. Damayanti NP, Budka JA, Khella HWZ, Ferris MW, Ku SY, Kauffman E, et al. Therapeutic targeting of TFE3/IRS-1/PI3K/mTOR axis in translocation renal cell carcinoma. Clin Cancer Res. 2018;24:5977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Tang Y, Hu X, Yin X, Chen Y, Chen J, et al. Patients with ASPSCR1-TFE3 fusion achieve better response to ICI based combination therapy among TFE3-rearranged renal cell carcinoma. Mol Cancer. 2024;23:132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the PLA General Hospital-Third Medical Center Discipline Innovation and Development Special Fund Project (2024BJ-04), Capital’s Funds for Health Improvement and Research (No. 2024-1-5042), PLA General Hospital Youth Independent Innovation Science Fund Growth Project (22QNCZ029).

Author information

Authors and Affiliations

Authors

Contributions

Xu Zhang, Xin Ma, and Xiubin Li conceived and designed the study. Junxiao Liu, Xin Ma, and Xiubin Li participated in the experiment design. Junxiao Liu, Huayi Feng and Zhuang Xiong performed the experiments. Junxiao Liu, Huayi Feng and Zhuang Xiong wrote the manuscript. Shouqing Cao, Tianwei Cai, Wenjie Wei, and Wen Tao contributed to analyze and supervise the results of this study. Xiubin Li and Xin Ma revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xu Zhang, Xin Ma or Xiubin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Human tissues were collected at the Department of Urology of Chinese PLA General Hospital in accordance with the protocol approved by The Ethics Committee of the Chinese PLA General Hospital. Written informed consent was obtained from all participants before sample collection. All ethical regulations relevant to human research participants were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Feng, H., Xiong, Z. et al. LGI3 promotes the progression of TFE3-rearranged renal cell carcinoma through GEMIN6/AURKB axis. Oncogene 44, 3729–3740 (2025). https://doi.org/10.1038/s41388-025-03553-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03553-3

Search

Quick links