Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

OTUB1 antagonizes TRIM21 to induce deubiquitination of SPHK1 and promote the progression of hepatocellular carcinoma

Abstract

SPHK1 is critical for maintaining cellular lipid balance. Aberrant expression of SPHK1 aggravates malignancy of tumor through multiple signaling pathways. Here, we report a novel regulatory mechanism in ubiquitination of SPHK1. It is demonstrated that TRIM21 facilitates SPHK1 degradation via promoting K48-linked polyubiquitination. OTUB1 prohibits the TRIM21-induced ubiquitination of SPHK1 to maintain its high expression level. These findings define a new insight into the ubiquitination regulatory axis of SPHK1 and demonstrate that OTUB1-mediated SPHK1 stabilization facilitates proliferation and migration of HCC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SPHK1 is upregulated in HCC and serves as a risk factor for poor prognosis.
Fig. 2: SPHK1 physically interacts with OTUB1 in HCC.
Fig. 3: OTUB1 stabilizes the expression of SPHPK1 protein.
Fig. 4: OTUB1 stabilizes the expression of SPHK1 through deubiquitination.
Fig. 5: OTUB1 accelerates HCC proliferation by upregulating SPHK1.
Fig. 6: SPHK1 and OTUB1 regulate the metastasis of HCC.
Fig. 7: SPHK1 protein level in HCC cells is regulated by OTUB1 and TRIM21.
Fig. 8: OTUB1 and TRIM21 correlate with SPHK1 and predicts poor prognosis of HCC patients.

Similar content being viewed by others

Data availability

The datasets examined in this study can be obtained from the corresponding author upon reasonable request.

References

  1. Gao Z, Wang H, Xiao FJ, Shi XF, Zhang YK, Xu QQ, et al. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells. Int J Biochem Cell Biol. 2016;74:152–60.

    Article  CAS  PubMed  Google Scholar 

  2. Kao WH, Liao LZ, Chen YA, Lo UG, Pong RC, Hernandez E, et al. SPHK1 promotes bladder cancer metastasis via PD-L2/c-Src/FAK signaling cascade. Cell Death Dis. 2024;15:678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jin L, Zhu J, Yao L, Shen G, Xue BX, Tao W. Targeting SphK1/2 by SKI-178 inhibits prostate cancer cell growth. Cell Death Dis. 2023;14:537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jin Z, Li H, Hong X, Ying G, Lu X, Zhuang L, et al. TRIM14 promotes colorectal cancer cell migration and invasion through the SPHK1/STAT3 pathway. Cancer Cell Int. 2018;18:202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi J, He YY, Sun JX, Guo WX, Li N, Xue J, et al. The impact of sphingosine kinase 1 on the prognosis of hepatocellular carcinoma patients with portal vein tumor thrombus. Ann Hepatol. 2015;14:198–206.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Lin C, Song J, Chen H, Chen X, Ren L, et al. Parkin facilitates proteasome inhibitor-induced apoptosis via suppression of NF-kappaB activity in hepatocellular carcinoma. Cell Death Dis. 2019;10:719.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation. Annu Rev Biochem. 2017;86:123–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mennerich D, Kubaichuk K, Kietzmann T. DUBs, hypoxia, and cancer. Trends Cancer. 2019;5:632–53.

    Article  CAS  PubMed  Google Scholar 

  9. Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 2017;86:159–92.

    Article  CAS  PubMed  Google Scholar 

  10. Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J Mol Biol. 2009;386:1011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. 2009;138:389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550–63.

    Article  CAS  PubMed  Google Scholar 

  13. Mulas F, Wang X, Song S, Nishanth G, Yi W, Brunn A, et al. The deubiquitinase OTUB1 augments NF-kappaB-dependent immune responses in dendritic cells in infection and inflammation by stabilizing UBC13. Cell Mol Immunol. 2021;18:1512–27.

    Article  CAS  PubMed  Google Scholar 

  14. Pasupala N, Morrow ME, Que LT, Malynn BA, Ma A, Wolberger C. OTUB1 non-catalytically stabilizes the E2 ubiquitin-conjugating enzyme UBE2E1 by preventing its autoubiquitination. J Biol Chem. 2018;293:18285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong W, Wang H, Shahzad K, Bock F, Al-Dabet MM, Ranjan S, et al. Activated protein C ameliorates renal ischemia-reperfusion injury by restricting Y-box binding protein-1 ubiquitination. J Am Soc Nephrol. 2015;26:2789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao L, Wang X, Yu Y, Deng L, Chen L, Peng X, et al. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. J Biol Chem. 2018;293:4883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herhaus L, Al-Salihi M, Macartney T, Weidlich S, Sapkota GP. OTUB1 enhances TGFbeta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun. 2013;4:2519.

    Article  PubMed  Google Scholar 

  18. Goncharov T, Niessen K, de Almagro MC, Izrael-Tomasevic A, Fedorova AV, Varfolomeev E, et al. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J. 2013;32:1103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Yang JY, Xie X, Jie Z, Zhang L, Shi J, et al. Preventing abnormal NF-kappaB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res. 2019;29:474–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou H, Liu Y, Zhu R, Ding F, Cao X, Lin D, et al. OTUB1 promotes esophageal squamous cell carcinoma metastasis through modulating Snail stability. Oncogene. 2018;37:3356–68.

    Article  CAS  PubMed  Google Scholar 

  21. Sun XX. Dai MS. Deubiquitinating enzyme regulation of the p53 pathway: a lesson from Otub1. World J Biol Chem. 2014;5:75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fletcher AJ, James LC. Coordinated neutralization and immune activation by the cytosolic antibody receptor TRIM21. J Virol. 2016;90:4856–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foss S, Bottermann M, Jonsson A, Sandlie I, James LC, Andersen JT. TRIM21-from intracellular immunity to therapy. Front Immunol. 2019;10:2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhodes DA, Isenberg DA. TRIM21 and the function of antibodies inside cells. Trends Immunol. 2017;38:916–26.

    Article  CAS  PubMed  Google Scholar 

  25. Alomari M. TRIM21 - A potential novel therapeutic target in cancer. Pharmacol Res. 2021;165:105443.

    Article  CAS  PubMed  Google Scholar 

  26. Mevissen TET, Prasad AV, Walter JC. TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep. 2023;42:112125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wen P, Wang H, Li Y, Sui X, Hou Z, Guo X, et al. MICALL2 as a substrate of ubiquitinase TRIM21 regulates tumorigenesis of colorectal cancer. Cell Commun Signal. 2022;20:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fletcher AJ, Mallery DL, Watkinson RE, Dickson CF, James LC. Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. Proc Natl Acad Sci USA. 2015;112:10014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xia L, Xing Y, Ye X, Wu Y, Yang Y, Yin Z. TRIM21-driven K63-linked ubiquitination of RBM38c, as a novel interactor of BECN1, contributes to DNA damage-induced autophagy. Cell Death Differ. 2025;32:1317–35.

    Article  PubMed  Google Scholar 

  30. Zhu Q, Fu Y, Cui CP, Ding Y, Deng Z, Ning C, et al. OTUB1 promotes osteoblastic bone formation through stabilizing FGFR2. Signal Transduct Target Ther. 2023;8:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  32. Lu ZP, Xiao ZL, Yang Z, Li J, Feng GX, Chen FQ, et al. Hepatitis B virus X protein promotes human hepatoma cell growth via upregulation of transcription factor AP2alpha and sphingosine kinase 1. Acta Pharm Sin. 2015;36:1228–36.

    Article  CAS  Google Scholar 

  33. Chen K, Pan Q, Gao Y, Yang X, Wang S, Peppelenbosch MP, et al. DMS triggers apoptosis associated with the inhibition of SPHK1/NF-kappaB activation and increase in intracellular Ca2+ concentration in human cancer cells. Int J Mol Med. 2014;33:17–24.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Sun Y, Peng X, Naqvi S, Yang Y, Zhang J, et al. The tumorigenic effect of sphingosine kinase 1 and its potential therapeutic target. Cancer Control. 2020;27:1073274820976664.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu XT, Huang Y, Liu D, Jiang YC, Zhao M, Chung LH, et al. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J Transl Med. 2024;22:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiao H, Jiang T, Mu P, Chen X, Wen X, Hu Z, et al. Cell fate determined by the activation balance between PKR and SPHK1. Cell Death Differ. 2021;28:401–18.

    Article  CAS  PubMed  Google Scholar 

  37. Marfe G, Mirone G, Shukla A, Di Stefano C. Sphingosine kinases signalling in carcinogenesis. Mini Rev Med Chem. 2015;15:300–14.

    Article  CAS  PubMed  Google Scholar 

  38. Chen X, Yong H, Chen M, Deng C, Wang P, Chu S, et al. TRIM21 attenuates renal carcinoma lipogenesis and malignancy by regulating SREBF1 protein stability. J Exp Clin Cancer Res. 2023;42:34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benton D, Chernoff J. TRIMming away colon cancer: TRIM21-mediated ubiquitination as an activator of the Hippo tumor suppressor pathway. Cell Chem Biol. 2023;30:699–701.

    Article  CAS  PubMed  Google Scholar 

  40. Fan X, Dai Y, Mo C, Li H, Luan X, Wang B, et al. TRIM21 promotes tumor growth and gemcitabine resistance in pancreatic cancer by inhibiting EPHX1-mediated arachidonic acid metabolism. Adv Sci (Weinh). 2025;12:e2413674.

    Article  PubMed  Google Scholar 

  41. Liu YX, Wan S, Yang XQ, Wang Y, Gan WJ, Ye WL, et al. TRIM21 is a druggable target for the treatment of metastatic colorectal cancer through ubiquitination and activation of MST2. Cell Chem Biol. 2023;30:709–25 e706.

    Article  PubMed  Google Scholar 

  42. Dewson G, Eichhorn PJA, Komander D. Deubiquitinases in cancer. Nat Rev Cancer. 2023;23:842–62.

    Article  CAS  PubMed  Google Scholar 

  43. Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, et al. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer. 2024;23:148.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wu M, Sun L, Song T. OTUB1-mediated inhibition of ubiquitination: a growing list of effectors, multiplex mechanisms, and versatile functions. Front Mol Biosci. 2023;10:1261273.

    Article  CAS  PubMed  Google Scholar 

  45. Karunarathna U, Kongsema M, Zona S, Gong C, Cabrera E, Gomes AR, et al. OTUB1 inhibits the ubiquitination and degradation of FOXM1 in breast cancer and epirubicin resistance. Oncogene. 2016;35:1433–44.

    Article  CAS  PubMed  Google Scholar 

  46. Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis MJ, et al. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol. 2013;20:1033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partially funded by the Foundation of the Department of Science and Technology of Liaoning Province [grant number 2022-BS-140].

Author information

Authors and Affiliations

Authors

Contributions

Chen Sun: writing – review & editing, writing – original draft, visualization, validation, project administration, methodology, investigation, funding acquisition, formal analysis, conceptualization. Shuang Cai: writing – review & editing, writing – original draft, validation, supervision, resources, project administration, methodology, investigation, conceptualization. Jun Yang: writing – review & editing, writing – original draft, validation, supervision, resources, project administration, methodology, investigation, conceptualization. Mingyang Du: writing – review & editing, supervision, methodology. Qi Pan: writing – review & editing, supervision, methodology. Yutao Wang: writing – review & editing, supervision, project administration, conceptualization. Wei Sun: writing – review & editing, supervision, project administration, conceptualization. Ming Bai: writing – review & editing, supervision, project administration, conceptualization. Hongyuan Liang: writing – review & editing, supervision, project administration, conceptualization.

Corresponding authors

Correspondence to Yutao Wang, Wei Sun, Ming Bai or Hongyuan Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Cai, S., Yang, J. et al. OTUB1 antagonizes TRIM21 to induce deubiquitination of SPHK1 and promote the progression of hepatocellular carcinoma. Oncogene 44, 3985–3998 (2025). https://doi.org/10.1038/s41388-025-03556-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03556-0

Search

Quick links