Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor antigen PRAME promotes melanoma growth by inactivating p53 through the SIRT1-DBC1 axis

Abstract

Preferentially expressed antigen in melanoma (PRAME), which is highly expressed in melanoma, is associated with tumor progression and malignancy. Notably, melanoma cells often exhibit inactivation of the tumor suppressor p53 despite carrying the wild-type p53 gene. Here, we investigated the functional interplay between PRAME and p53. Consistent with our analysis of human databases, PRAME overexpression promoted melanoma cell proliferation. Conversely, PRAME downregulation produced the opposite effects, accompanied by an increase in apoptosis. RNA sequencing revealed aberrant regulation of p53 target genes following PRAME depletion, which was further supported by reverse transcription-quantitative polymerase chain reaction and luciferase reporter assays. To explore the underlying mechanism, we isolated the PRAME protein complex and identified DBC1, an SIRT1 suppressor, as a component of the complex. Furthermore, we observed that PRAME promoted p53 deacetylation. The interaction of PRAME with DBC1 releases SIRT1 from DBC1, enabling SIRT1 activation and subsequent p53 deacetylation. The combination of PRAME depletion and SIRT1 inhibition can significantly promote the growth retardation of melanoma cells, as demonstrated by xenograft analysis in nude mice. Collectively, these findings suggest that the acquired elevation of the PRAME level during melanoma pathogenesis may suppress p53 pathways, thereby promoting tumor growth. We propose that PRAME silencing combined with the use of SIRT1 inhibitors is a promising therapeutic strategy for melanoma by restoring p53 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRAME is highly expressed in melanoma and promotes cell proliferation.
Fig. 2: PRAME knockdown leads to aberrant expression of p53 target genes.
Fig. 3: PRAME suppresses the expression of p53 target genes.
Fig. 4: DBC1 is identified as a component of the PRAME complex.
Fig. 5: PRAME suppresses p53 acetylation, which is hindered by SIRT1 inhibition.
Fig. 6: PRAME disrupts the DBC1-SIRT1 interaction and facilitates p53 deacetylation in vitro.
Fig. 7: PRAME depletion and SIRT1 inhibition significantly enhance tumor regression.
Fig. 8: Hypothetical model for PRAME-mediated p53 inactivation in melanoma development.

Similar content being viewed by others

Data availability

The RNA-seq data from PRAME-depleted A375SM melanoma cells have been deposited in NCBI’s Gene Expression Omnibus (GEO) under accession number GSE306132.

References

  1. Wagstaff W, Mwamba RN, Grullon K, Armstrong M, Zhao P, Hendren-Santiago B, et al. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes Dis. 2022;9:1608–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yajima I, Kumasaka MY, Thang ND, Goto Y, Takeda K, Yamanoshita O, et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy. Dermatol Res Pract. 2012;2012:354191.

    Article  PubMed  Google Scholar 

  3. Sabbah M, Najem A, Krayem M, Awada A, Journe F, Ghanem GE. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers. 2021;13:1685.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Davis EJ, Johnson DB, Sosman JA, Chandra S. Melanoma: What do all the mutations mean?. Cancer. 2018;124:3490–9.

    Article  PubMed  Google Scholar 

  5. Yang G, Rajadurai A, Tsao H. Recurrent patterns of dual RB and p53 pathway inactivation in melanoma. J Invest Dermatol. 2005;125:1242–51.

    Article  CAS  PubMed  Google Scholar 

  6. Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci. 2020;21:8984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lezcano C, Jungbluth AA, Nehal KS, Hollmann TJ, Busam KJ. PRAME Expression in Melanocytic Tumors. Am J Surg Pathol. 2018;42:1456–65.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cascardi E, Cazzato G, Ingravallo G, Dellino M, Lupo C, Casatta N, et al. PReferentially Expressed Antigen in MElanoma (PRAME): preliminary communication on a translational tool able to early detect Oral Malignant Melanoma (OMM). J Cancer. 2023;14:628–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M. The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin Cancer Res. 2003;10:4307–13.

    Article  Google Scholar 

  10. Epping MT, Hart AA, Glas AM, Krijgsman O, Bernards R. PRAME expression and clinical outcome of breast cancer. Br J Cancer. 2008;99:398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shiseki M, Ishii M, Ohwashi M, Wang YH, Tanaka N, Osanai S, et al. High PRAME expression is associated with poor survival and early disease progression in myelodysplastic syndromes with a low bone marrow blast percentage. Leuk Lymphoma. 2021;62:2448–56.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka N, Wang YH, Shiseki M, Takanashi M, Motoji T. Inhibition of PRAME expression causes cell cycle arrest and apoptosis in leukemic cells. Leuk Res. 2011;35:1219–25.

    Article  CAS  PubMed  Google Scholar 

  13. Tan P, Zou C, Yong B, Han J, Zhang L, Su Q, et al. Expression and prognostic relevance of PRAME in primary osteosarcoma. Biochem Biophys Res Commun. 2012;419:801–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu H, Wang J, Yin J, Lu B, Yang Q, Wan Y, et al. Downregulation of PRAME Suppresses Proliferation and Promotes Apoptosis in Hepatocellular Carcinoma Through the Activation of P53 Mediated Pathway. Cell Physiol Biochem. 2018;45:1121–35.

    Article  CAS  PubMed  Google Scholar 

  15. Epping MT, Wang L, Edel MJ, Carlée L, Hernandez M, Bernards R. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122:835–47.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang W, Li L, Cai L, Liang Y, Xu J, Liu Y, et al. Tumor-associated antigen Prame targets tumor suppressor p14/ARF for degradation as the receptor protein of CRL2Prame complex. Cell Death Differ. 2021;28:1926–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurtenbach S, Sanchez MI, Kuznetsoff J, Rodriguez DA, Weich N, Dollar JJ, et al. PRAME induces genomic instability in uveal melanoma. Oncogene. 2024;43:555–65.

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Yue Q, Wei H, Pan G. PRAME induces apoptosis and inhibits proliferation of leukemic cells in vitro and in vivo. Int J Clin Exp Pathol. 2015;8:14549–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu Y, Rong LJ, Meng SL, Hou FL, Zhang JH, Pan G. PRAME promotes in vitro leukemia cells death by regulating S100A4/p53 signaling. Eur Rev Med Pharm Sci. 2016;20:1057–63.

    CAS  Google Scholar 

  20. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luca M, Lenzi R, Leejackson D, Gutman M, Fidler I, Bareli M. P53 mutations are infrequent and do not correlate with the metastatic potential of human-melanoma cells. Int J Oncol. 1993;3:19–22.

    CAS  PubMed  Google Scholar 

  22. Weiss J, Heine M, Arden KC, Körner B, Pilch H, Herbst RA, et al. Mutation and expression of TP53 in malignant melanomas. Recent Results Cancer Res. 1995;139:137–54.

    Article  CAS  PubMed  Google Scholar 

  23. Houben R, Hesbacher S, Schmid CP, Kauczok CS, Flohr U, Haferkamp S, et al. High-level expression of wild-type p53 in melanoma cells is frequently associated with inactivity in p53 reporter gene assays. PLoS ONE. 2011;6:e22096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA, et al. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer. 2011;11:203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12.

    Article  CAS  PubMed  Google Scholar 

  26. Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Mol Med. 2010;16:528–36.

    CAS  Google Scholar 

  27. Yogosawa S, Yoshida K. Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci. 2018;109:3376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia Z, Kon N, Gu AP, Tavana O, Gu W. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene. 2022;41:3039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell. 2007;28:277–90.

    Article  CAS  PubMed  Google Scholar 

  30. Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature. 2008;451:583–6.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008;451:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee YK, Park UH, Kim EJ, Hwang JT, Jeong JC, Um SJ. Tumor antigen PRAME is up-regulated by MZF1 in cooperation with DNA hypomethylation in melanoma cells. Cancer Lett. 2017;403:144–51.

    Article  CAS  PubMed  Google Scholar 

  33. Jeon D, Kim N, Um SJ. BET Inhibitors Induce p53-Independent Growth Arrest in HCT116 Cells via Epigenetic Control of the E2F1/c-MYC Axis. Biol Pharm Bull. 2032;46:12–8.

    Article  Google Scholar 

  34. Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, et al. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell. 2013;23:618–33.

    Article  CAS  PubMed  Google Scholar 

  35. Wadelin FR, Fulton J, Collins HM, Tertipis N, Bottley A, Spriggs KA, et al. PRAME is a golgi-targeted protein that associates with the Elongin BC complex and is upregulated by interferon-gamma and bacterial PAMPs. PLoS ONE. 2013;8:e58052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang H, Suh JY, Jung YS, Jung JW, Kim MK, Chung JH. Peptide switch is essential for Sirt1 deacetylase activity. Mol Cell. 2011;44:203–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim HJ, Moon SJ, Kim JH. Mechanistic insights into the dual role of CCAR2/DBC1 in cancer. Exp Mol Med. 2023;55:1691–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohanna M, Bonet C, Bille K, Allegra M, Davidson I, Bahadoran P, et al. SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells. Oncotarget. 2014;5:2085–95.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilking MJ, Singh C, Nihal M, Zhong W, Ahmad N. SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Arch Biochem Biophys. 2014;563:94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saunderson EA, Encabo HH, Devis J, Rouault-Pierre K, Piganeau M, Bell CG, et al. CRISPR/dCas9 DNA methylation editing is heritable during human hematopoiesis and shapes immune progeny. Proc Natl Acad Sci USA. 2023;120:e2300224120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harshita, Harish V, Lad Upendra S, Mohd S, Singh SK, Agrawal P, et al. Next-gen cancer treatment: nanotechnology-driven siRNA delivery solutions. Assay Drug Dev Technol. 2025;23:115–28.

    Article  Google Scholar 

  42. Zhang J, Chen C, Chen X, Liao K, Li F, Song X, et al. Linker-free PROTACs efficiently induce the degradation of oncoproteins. Nat Commun. 2025;16:4794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alonso MR, Grinyó-Escuer A, Duro-Sánchez S, Rius-Ruiz I, Bort-Brusca M, Escorihuela M, et al. Generation of chimeric antigen receptor T cells targeting p95HER2 in solid tumors. Nat Commun. 2024;15:9589.

    Article  Google Scholar 

  44. Krzysiak TC, Choi YJ, Kim YJ, Yang Y, DeHaven C, Thompson L, et al. Inhibitory protein-protein interactions of the SIRT1 deacetylase are choreographed by post-translational modification. Protein Sci. 2024;33:e4938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kewitz S, Staege MS. Knock-down of PRAME increases retinoic acid signaling and cytotoxic drug sensitivity of Hodgkin lymphoma cells. PLoS ONE. 2013;8:e55897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan H, Zhao RM, Wang ZJ, Zhao FR, Wang SL. Knockdown of PRAME enhances adriamycin-induced apoptosis in chronic myeloid leukemia cells. Eur Rev Med Pharm Sci. 2015;19:4827–34.

    CAS  Google Scholar 

  47. Lu M, Miller P, Lu X. Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Lett. 2014;588:2616–21.

    Article  CAS  PubMed  Google Scholar 

  48. Sasaki T, Gan EC, Wakeham A, Kornbluth S, Mak TW, Okada H. HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53. Genes Dev. 2007;21:848–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, et al. Reciprocal repression between P53 and TCTP. Nat Med. 2011;18:91–9.

    Article  PubMed  Google Scholar 

  50. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang C, Yang Y, Wu X, Li J, Liu K, Fang D, et al. Reciprocal modulation of long noncoding RNA EMS and p53 regulates tumorigenesis. Proc Natl Acad Sci USA. 2022;119:e2111409119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fenouille N, Puissant A, Tichet M, Zimniak G, Abbe P, Mallavialle A, et al. SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene. 2011;30:4887–900.

    Article  CAS  PubMed  Google Scholar 

  53. Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med. 2012;18:1239–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bert Vogelstein (Howard Hughes Medical Institute, Johns Hopkins Oncology Center) for providing p21WAF1 and MDM2 promoter-luciferase reporter constructs.

Funding

This study was supported in part by the Basic Research Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2022R1F1A1068623 to E.J.K.), by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (RS-2025-00562288 to S.J.U.), and by Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (RS-2023-NF001356 to S.J.U.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.K.L., H.H.H., H.Y., E.J.K., and S.J.U.; methodology, Y.K.L., H.H.H., U.H.P., and H.Y.; investigation, data curation, and visualization, Y.K.L., H.H.H.; writing, Y.K.L., H.H.H., E.J.K., and S.J.U.; supervision and funding acquisition, E.J.K. and S.J.U. All authors have read and agreed to submit this version of the manuscript.

Corresponding authors

Correspondence to Eun-Joo Kim or Soo-Jong Um.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of Sejong University (Approval No. SJ-20240111-02E1) and conducted in accordance with institutional guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YK., Heo, H.H., Park, UH. et al. Tumor antigen PRAME promotes melanoma growth by inactivating p53 through the SIRT1-DBC1 axis. Oncogene 44, 4087–4099 (2025). https://doi.org/10.1038/s41388-025-03565-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-025-03565-z

Search

Quick links