Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer-associated fibroblasts drive lung adenocarcinoma progression via THBS2-mediated epithelial-mesenchymal transition

Abstract

The role of cancer-associated fibroblasts (CAFs) in the initiation and invasion phases of human lung adenocarcinoma (LUAD) development is not fully understood. In this study, we utilized single-cell RNA sequencing, spatial transcriptomics, and a combination of in vivo and in vitro models to decode the dynamics of tumor-stroma interactions during human LUAD progression, focusing primarily on adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC). We identified a matrix CAF (mCAF) subtype characterized by high THBS2 expression, which was closely associated with poor clinical outcomes, tumor recurrence, and the invasive dynamics of LUAD. Spatial transcriptomics and multiplex immunohistochemistry analysis revealed that this CAF subpopulation was closely associated with tumor cells, with clear spatial colocalization. In vivo and in vitro experiments demonstrated that THBS2 secreted by these mCAFs directly binds to SDC4 on tumor cells, enhancing tumor epithelial-mesenchymal transition (EMT) programs. This study highlights THBS2+ mCAFs as key regulators of tumor-stroma interactions and identifies the THBS2-SDC4-EMT axis as a potential therapeutic target in LUAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fibroblasts exhibit stronger interactions and associations with LUAD cells in multimodal data.
Fig. 2: CAF dynamics and functional heterogeneity in LUAD progression.
Fig. 3: Identification of critical genes linking CAFs to LUAD progression.
Fig. 4: THBS2 enhances oncogenic phenotypes and induces EMT in LUAD cells.
Fig. 5: THBS2 promotes tumor growth in vivo.
Fig. 6: THBS2 promotes malignant phenotype of LUAD through Binding to SDC4.
Fig. 7: THBS2-SDC4 axis promotes tumor progression through the activation of EMT signaling.

Similar content being viewed by others

Data availability

All scRNA-seq datasets used in this study are publicly available. The datasets can be accessed via the following links: GSE189357 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189357) and GSE164789 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164789). The bulk transcriptome data was download from the TCGA (https://portal.gdc.cancer.gov/) and Gene Expression Omnibus database, including GSE14814 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14814), GSE50081 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081), GSE72094 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094), GSE31210 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31210), GSE3141 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3141, GSE26939 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26939), GSE30219 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30219), and GSE20913 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20913). Additionally, the 10X Visium Spatial transcriptome data were collected from GSE189487 dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE189487).

References

  1. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–87.

    Article  PubMed  Google Scholar 

  2. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151:193–203.

    Article  PubMed  Google Scholar 

  3. Yotsukura M, Asamura H, Motoi N, Kashima J, Yoshida Y, Nakagawa K, et al. Long-term prognosis of patients with resected adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J Thorac Oncol. 2021;16:1312–20.

    Article  PubMed  Google Scholar 

  4. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:39–51.

    Article  PubMed  Google Scholar 

  5. Ugalde Figueroa PA, Marques E, Cilento VJ, Giroux DJ, Nishimura KK, Detterbeck FC, et al. Completeness of resection and long-term survival of patients undergoing resection for pathologic T3 NSCLC: an International Association for the Study of Lung Cancer Analysis. J Thorac Oncol. 2024;19:141–52.

    Article  PubMed  Google Scholar 

  6. Zhu J, Fan Y, Xiong Y, Wang W, Chen J, Xia Y, et al. Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. Exp Mol Med. 2022;54:2060–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bremnes RM, Dønnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol. 2011;6:209–17.

    Article  PubMed  Google Scholar 

  8. Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, et al. The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 2022;162:890–906.

    Article  CAS  PubMed  Google Scholar 

  9. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014;34:280–300.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Lan W, Xu M, Song J, Mao J, Li C, et al. Cancer-associated fibroblast-derived SDF-1 induces epithelial-mesenchymal transition of lung adenocarcinoma via CXCR4/β-catenin/PPARδ signalling. Cell Death Dis. 2021;12:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu L, Ba Y, Yang S, Zuo A, Liu S, Zhang Y, et al. FOS-driven inflammatory CAFs promote colorectal cancer liver metastasis via the SFRP1-FGFR2-HIF1 axis. Theranostics. 2025;15:4593–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Zuo A, Ba Y, Liu S, Chen J, Yang S, et al. Cancer-associated fibroblast-derived SEMA3C facilitates colorectal cancer liver metastasis via NRP2-mediated MAPK activation. Proc Natl Acad Sci USA. 2025;122:e2423077122.

    Article  CAS  PubMed  Google Scholar 

  14. Barbazan J, Pérez-González C, Gómez-González M, Dedenon M, Richon S, Latorre E, et al. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat Commun. 2023;14:6966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu T, Yang X, Shi Y, Zhao M, Bi G, Liang J, et al. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules. Cell Discov. 2020;6:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xing X, Yang F, Huang Q, Guo H, Li J, Qiu M. Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. Sci Adv. 2021;7:eabd9738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–291.e289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Q, Hsu CY, Shyr Y. Scalable and model-free detection of spatial patterns and colocalization. Genome Res. 2022;32:1736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Deng J, Xu H, Liu L, Zhang Y, Ba Y, et al. Efficient discovery of robust prognostic biomarkers and signatures in solid tumors. Cancer Lett. 2025;613:217502.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Liu L, Weng S, Xu H, Xing Z, Ren Y. et al. BEST: a web application for comprehensive biomarker exploration on large-scale data in solid tumors. J Big Data ;10:165. 2023;10:165

    Article  CAS  Google Scholar 

  25. Liu Z, Ba Y, Shan D, Zhou X, Zuo A, Zhang Y, et al. THBS2-producing matrix CAFs promote colorectal cancer progression and link to poor prognosis via the CD47-MAPK axis. Cell Rep. 2025;44:115555.

    Article  CAS  PubMed  Google Scholar 

  26. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31:195–208.

    Article  PubMed  Google Scholar 

  27. Yang D, Liu J, Qian H, Zhuang Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp Mol Med. 2023;55:1322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin S, Plikus MV, Nie Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. Nat Protoc. 2025;20:180–219.

    Article  CAS  PubMed  Google Scholar 

  29. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2022;40:517–26.

    Article  CAS  PubMed  Google Scholar 

  30. Chhabra Y, Weeraratna AT. Fibroblasts in cancer: unity in heterogeneity. Cell. 2023;186:1580–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pelka K, Hofree M, Chen JH, Sarkizova S, Pirl JD, Jorgji V, et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell. 2021;184:4734–4752.e4720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Wu C, Hu H, Qin G, Wu X, Bai F, et al. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell. 2023;41:1152–1169.e1157.

    Article  PubMed  Google Scholar 

  33. Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, et al. Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. 2023;22:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, et al. Single-cell and spatial transcriptomics reveal POSTN(+) cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin Transl Med. 2023;13:e1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin P, Chen H, Wang Y, Huang L, Huang K, Xiao G, et al. Cancer-associated fibroblasts undergoing neoadjuvant chemotherapy suppress rectal cancer revealed by single-cell and spatial transcriptomics. Cell Rep Med. 2023;4:101231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerdidani D, Aerakis E, Verrou KM, Angelidis I, Douka K, Maniou MA. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J Exp Med. 2022;219:e20210815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar L. M EF. Mfuzz: a software package for soft clustering of microarray data. Bioinformation. 2007;2:5–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liao X, Wang W, Yu B, Tan S. Thrombospondin-2 acts as a bridge between tumor extracellular matrix and immune infiltration in pancreatic and stomach adenocarcinomas: an integrative pan-cancer analysis. Cancer Cell Int. 2022;22:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep Prog Phys. 2019;82:064602.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou X, Han J, Zuo A, Ba Y, Liu S, Xu H, et al. THBS2 + cancer-associated fibroblasts promote EMT leading to oxaliplatin resistance via COL8A1-mediated PI3K/AKT activation in colorectal cancer. Mol Cancer. 2024;23:282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122:899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 2022;3:793–807.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21:217–38.

    Article  CAS  PubMed  Google Scholar 

  45. Wang X, Eichhorn PJA, Thiery JP. TGF-β, EMT, and resistance to anti-cancer treatment. Semin Cancer Biol. 2023;97:1–11.

    Article  PubMed  Google Scholar 

  46. Kim HJ, Yang K, Kim K, Lee YJ, Lee S, Ahn SY, et al. Reprogramming of cancer-associated fibroblasts by apoptotic cancer cells inhibits lung metastasis via Notch1-WISP-1 signaling. Cell Mol Immunol. 2022;19:1373–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2:a006627.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao F, Pu Y, Cui M, Wang H, Cai S. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int. 2017;17:100.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chute C, Yang X, Meyer K, Yang N, O’Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yao W, Rose JL, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;568:410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, et al. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev. 2018;118:9152–232.

    Article  CAS  PubMed  Google Scholar 

  52. Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, et al. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell Death Dis. 2021;12:492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Henan Provincial Science and Technology Research Project (221100310100).

Author information

Authors and Affiliations

Authors

Contributions

ZQL conceived, designed, and supervised the research. XWH and DDZ provided project guidance and funding support. YQR and RJM conducted the bioinformatics analysis. ANZ, YHB, STL and HX performed the experiments, with ANZ conducting the statistical analysis of experimental trials. YQR, RJM, and DDZ wrote the manuscript. RJM, PL and QC offered research guidance. YYZ, YY, SYW, JHD, TP, and YKC collected the data. ZQL, RJM and DDZ revised the manuscript.

Corresponding authors

Correspondence to Xinwei Han, Dongdong Zhou or Zaoqu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All human tissue samples were obtained with written informed consent from each patient and approved by the Ethics Committee (Approval Nos. HLugA120PG01: 2020-0930; HLugA030PG04-2: 2021-0215; HLugA180Su07: 2022-0401). All animal experiments were approved by the Institutional Animal Care and Use Committee of Zhengzhou University (Ethical Approval No. 2019-KY-383) and conducted in strict accordance with the National Institutes of Health (NIH) guidelines for animal care and use.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Ming, R., Zuo, A. et al. Cancer-associated fibroblasts drive lung adenocarcinoma progression via THBS2-mediated epithelial-mesenchymal transition. Oncogene (2025). https://doi.org/10.1038/s41388-025-03569-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-025-03569-9

Search

Quick links