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The renin-angiotensin system is a key regulator of blood pressure homeostasis, with its primary effector, the angiotensin Il type 1
receptor (AT1R), mediating vasoconstriction and processes fundamental to cancer progression, including proliferation,
angiogenesis, and metastasis. Elevated AT1R expression is consistently linked to poor prognosis and therapeutic resistance across
various malignancies. Preclinical studies provide compelling evidence that AT1R activation drives key cancer related processes,
while its inhibition by angiotensin receptor blockers (ARBs) suppresses tumour growth, induces apoptosis, reduces angiogenesis,
and inhibits metastasis across a wide range of cancer models. Critically, ARBs effectively modulate the tumour microenvironment
(TME), alleviating fibrosis, promoting anti-tumour immune cell phenotypes, and enhancing the efficacy of targeted therapies,
chemotherapies, and immunotherapies. Despite this strong preclinical evidence and supporting retrospective population studies,
clinical translation of ARBs in oncology remains inconsistent, with trials often limited by design, patient heterogeneity, and supra-
therapeutic ARB dosages required for acute anti-cancer effects. This review seeks to summarise the current understanding of AT1R's
role in cancer, highlight preclinical and clinical investigations of targeting RAS, and suggest further strategies to unlock its
therapeutic potential. Realising the full therapeutic promise of AT1R targeting in oncology requires a multifaceted approach,
including the development of innovative delivery systems, such as TME-activated ARBs, and the exploration of advanced
therapeutic modalities, such as antibody based AT1R inhibitors. Rigorously designed clinical trials that include biomarker-driven
patient stratification to identify responsive cohorts are crucial to define the context-dependent role of AT1R and conclusively
establish its clinical utility as a combinatorial strategy to enhance patient outcomes.
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THE RENIN-ANGIOTENSIN SYSTEM

The renin-angiotensin system (RAS) is an endocrine system that is
a key regulator of blood pressure through the modulation of fluid
volume homeostasis, electrolyte balance, and vascular structure/
integrity. Once thought to signal only at the systematic level, the
RAS is now understood to be regulated both locally, through cell
and tissue interaction, and systematically via endocrine mechan-
isms. These two modes of regulation are referred to as the local
and systemic RAS, respectively [1, 2].

Angiotensin structure, metabolite formation, and receptor
function

The primary precursor of the RAS, angiotensinogen (Agt) [2, 3], is a
57 kDa glycoprotein mainly produced in the liver. Agt is the only
known substrate for the aspartyl protease, renin, which is secreted
from the juxtaglomerular cells of the kidneys in response to reduced
plasma sodium or fluid volume levels. It is sequentially cleaved by
renin into the inactive decapeptide angiotensin | which is then
further cleaved by angiotensin-converting enzyme 1 (ACE1),
producing the bioactive octapeptide angiotensin Il (Ang I
(Ang1-8)) (Asp-Arg-Val-Tyr-lle-His-Pro-Phe) [1, 2]. Further enzymatic
cleavage generates additional bioactive peptides, which exert their
effect via binding to various G-protein-coupled receptors (GPCR).
The principal effector of the RAS is the 359 amino-acid, 41 kDa,

seven-transmembrane GPCR, angiotensin Il type 1 receptor (AT1R),
encoded by the AGTR1 gene [1]. This complicated regulatory system
involving these peptide-receptor interactions and their downstream
signalling (Fig. 1) has previously been thoroughly reviewed [4].

The classical RAS axis involving ACE1/Ang II/AT1R mediates
vasoconstriction, as well as many functions associated with cancer
progression, including proliferation and angiogenesis. Due to this
vasoconstrictive function, many small molecule inhibitors of ACE1
(-prils) and AT1R (-sartans) have been developed to treat hyperten-
sion (Table 1). The non-classical pathways (including Ang II/AT2R,
Ang [1-7]/MasR and alamadine/MRGD) regulate many of the same
processes as the classical pathway, often exerting opposing effects,
reducing proliferation, and promoting vasodilation [1]. Further
complicating this intricate system, GPCRs operate not only as
monomers but often function in dimeric (homo and hetero) and
even oligomeric states. Similarly, RAS receptors have been shown to
form heteromers with many other receptors, which mediate many
of the functions of both classical and non-classical RAS signalling [4].
For example, AT1R can transactivate receptor tyrosine kinases,
including epidermal growth factor receptor (EGFR). Activation of
AT1R induces EGFR signalling, modulating the intensity and
duration of EGFR downstream signalling. This activation is inhibited
by the ARB losartan or inhibition of the direct interaction between
AT1R and EGFR [5, 6].
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Fig. 1

Renin-angiotensin system signalling in cancer. Angiotensinogen is enzymatically cleaved into bioactive peptides which activate

GPCRs, AT1R, AT2R and MasR. AT1R signalling induces various cancer related processes in both tumour cells and CAFs via various intracellular
signalling cascades and EGFR transactivation. The counter-regulatory arm of the RAS, AT2R and MasR, inhibits various intracellular signalling
cascades to reduce cancer related processes. Angiotensin receptor blockers specifically inhibit AT1R signalling, reducing pro-cancer signalling
and simultaneously increasing anti-cancer signalling by freeing Ang Il to bind to AT2R or be converted into Ang 1-7.

Given the role of AT1R in fundamental physiological processes
and interactions with known cancer-related signalling pathways, it
is unsurprising that AT1R dysregulation has been implicated in
cancer development, progression, and response to anti-cancer
therapy [7]. Downstream activation of effectors, phospholipase A,
C and D, mitogen-activated protein kinase, protein kinase B (PKB/
Akt) and protein kinase C (PKC), as well as epidermal growth factor
(EGF) receptor (EGFR) transactivation make Ang II/AT1R signalling
a potent mitogenic signal, resulting in proliferation, cell migration
and angiogenesis [1, 7]. When dysregulated, these processes are
all hallmarks of cancer [8], identifying AT1R signalling as a strong
candidate for cancer therapy.

SPRINGER NATURE

THE RAS IN CANCER

Cancer is a leading cause of mortality worldwide, accounting
for 9.7 million deaths in 2022, with 1 in 9 men and 1 in
12 women dying from cancer. There were also an estimated
20 million new cancer cases in the same period, indicating a
huge global burden [9]. Whilst advances in our understanding
and treatment of these diseases have reduced mortality
rates, enhanced therapeutic strategies remain a necessity to
reduce the socio-economic burden of cancer. Unlocking
the potential of targeting AT1R as a cancer treatment may
provide a new strategy in the arsenal of anti-cancer
therapeutics.
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Table 1. List of clinically approved renin angiotensin system inhibitors.
Target ACE AT1R Renin
Drug name captopril imidapril zofenopril candesartan telmisartan valsartan aliskiren
cilazapril moexipril enalapril eprosartan olmesartan losartan
perindopril quinapril ramipril irbesartan azilsartan
lisinopril spirapril benazepril
delapril fosinopril trandolapril
Table 2. Population study data of renin-angiotensin system inhibitor (RASi) use and cancer risk/survival in various cancer subtypes.
Cancer type Therapeutic assessed Hazard ratio (HR), Odds ratio (OR), or Relative Risk Type of study Ref.
(RR)
Overall cancer ARB and ACEi ARB HR =0.83, 95% Cl [0.74, 0.93] Meta-analysis [42]
ACEi HR = 0.92 95% CI [0.86, 0.99]
- ACEi OR =1.269 95% CI [1.088, 1.480] Retrospective cohort [36]
study
Breast RASI RR =0.99, 95% CI [0.93, 1.05] Meta-analysis [41]
RR (> 10 years RASi use) = 0.80, 95% Cl [0.67, 0.95]
Colorectal RASi RR = 0.86, 95% Cl [0.78, 0.93] Meta-analysis [24]
CRC
CRC RASI HR (< 3 years post index colonoscopy) = 0.78, 95% Retrospective cohort [28]
Cl [0.64, 0.96] study
Kidney ARB HR = 0.818, 95% Cl [0.691, 0.969] Meta-analysis [31]
mRCC RASi HR (OS) = 0.81, 95% ClI [0.707, 0.929] Pooled analysis [25]
mRCC (Sunitinib RASI HR (OS) = 0.40, 95% CI [0.24, 0.66] Retrospective cohort [30]
treated) study
Liver HCC RASI HR = 0.6, 95CI [0.4, 0.9] Retrospective cohort [26]
study
HCC RASI HR (OS) = 0.50, 95% ClI [0.34, 0.74] Retrospective cohort [27]
study
Lung ARB RR=0.81, 95% CI [0.69, 0.94] Meta-analysis [19]
mNSCLC RASI HR =0.72, 95% Cl [0.55, 0.95] Retrospective cohort [23]
study
Oral ARB HR (OS, Advanced OSCC) =0.61, 95% Cl [0.39, 0.94] Retrospective cohort [29]
(oNde study
Pancreatic ARB HR (OS) = 0.80, 95% ClI [0.72, 0.89] Retrospective cohort [32]
study
Gastric ARB HR = 0.83, 95% Cl 0.71, 0.98] Retrospective cohort [34]
Gastro-oesophageal HR (> 2 years ARB use) = 0.42, 95% Cl [0.25, 0.72] study
Prostate ACEi OR = 1.438, 95% Cl [1.090, 1.897] Retrospective cohort [36]

study

ACEi Angiotensin converting enzyme inhibitor, ARB Angiotensin receptor blocker, C/ Confidence interval, CRC Colorectal carcinoma, HCC Hepatocellular
carcinoma, HR Hazard ratio, mNSCLC Metastatic non-small cell lung cancer, mRCC Metastatic renal cell carcinoma, OS Overall survival, OSCC Oral squamous cell
carcinoma, OR Overall risk, RASi Renin-angiotensin system inhibitor, RR Relative risk.
Many studies show a positive impact of RASi use on cancer risk and overall survival. The studies that show an increased risk/mortality implicate either RASi or

specifically ACEi.

Population studies and initial identification of AT1R/RAS as a
cancer target

Elevated expression of AGTR1, the gene encoding AT1R, has been
linked to poor-prognosis [8] and chemotherapy resistance in
breast cancer [10], and lower progression free-survival outcomes
in glioblastoma [11], colorectal cancer (CRC) [12], hepatocellular
carcinoma (HCC) [13], and oesophageal squamous cell carcinoma
(OSCQC) [14]. Population studies investigating the association of
RAS inhibitor (RASi) use, ARBs, and ACE inhibitors (ACEis), with
cancer incidence or survival have yielded mixed, yet mostly
positive results (Table 2) [10, 12, 13, 15-41]. Whilst some studies
found an increased risk with RASi use, particularly with ACEis or
grouped RASis, many studies provided evidence of a potential
benefit of ARB use [42], reducing risk, improving outcomes and
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increasing survival in a variety of cancers, including colorectal [24],
kidney [25], liver [26, 27], lung [19-23, 33] and breast [41]. These
contradictory results suggest that indiscriminate inhibition of RAS
signalling prevents some beneficial signalling pathways, such as
Ang 1-7/MasR, whereas targeted ATIR inhibition allows these
beneficial signalling pathways to remain active. This highlights the
need for further investigation into the specific effects of different
RASis, and their potential role in cancer treatment, with ARBs and
ACEis separated into distinct groups.

Preclinical evaluation of RASi in cancer

Investigations into the role of AT1R signalling and the effect of
various ARBs in an array of pre-clinical models have been
undertaken and generated compelling data to support the
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therapeutic potential of targeting AT1R in cancer. These studies
have concluded that AT1R signalling is implicated in promoting
many hallmarks of cancer [8], with inhibition by ARBs found to
inhibit these processes (Fig. 1). Inhibition of AT1R can also increase
the efficacy of other chemotherapeutics and overcome therapy
resistance [43]. Furthermore, some studies have found upregula-
tion of AT2R [44] and Ang 1-7 [45] provide an anti-cancer effect,
indicating a role for other RAS components and supporting the
hypothesis that indiscriminate inhibition of the RAS is not viable as
a therapeutic strategy in cancer.

Cancer cell proliferation. AT1R activation is often described as a
potent mitogenic signal, triggering downstream effectors and
intracellular signals linked to increased cancer cell proliferation
and tumour growth in a wide variety of cancer types [16, 46-48].
Pharmacological or genetic inhibition of AT1R has been shown to
reduce proliferation and increase apoptosis via a wide variety of
downstream signalling pathways (Fig. 1).

The PI3K/AKT/mTOR pathway is often implicated in enhancing
mitogenic signalling. EGFR signalling is known to stimulate this
pathway and it is likely that AT1R mediated EGFR-transactivation
promotes the proliferative effects of AT1R in cancer [5, 6].
Targeted AT1R inhibition-mediated downregulation of the PI3K/
AKT/mTOR pathway has a role in reduced proliferation and
increased apoptosis in CRC [46], lung [47], kidney [48], ovarian
[49], and oesophageal [16] cancers, as demonstrated by reduced
cell viability and tumour volume [46], reduced Ki-67 and increased
TUNEL staining [47, 48]. The transcription factor NF-kB, down-
stream of PI3K/AKT/mTOR pathway, is suppressed by ARBs such as
losartan and azilsartan in breast cancer, correlating with reduced
proliferation and increased apoptosis [8, 47]. In vivo, AGTR1
upregulation in breast cancer increased metastasis, while ARBs
reversed these effects [50]. These findings were also observed in
HCC and lymphoma mouse models [51, 52].

AT1R inhibition also suppresses MAPK and ERK signalling. Both
ARBs and gene silencing of AT1R reduce p-ERK levels and,
consequently, proliferation in gastric [53], ovarian [49] and
pancreatic [54] cancer cells, with these effects replicated in
xenograft models [49, 54]. Similar effects were observed with AT2R
overexpression in bladder cancer, suggesting ARB treatment
biases Ang Il to AT2R and results in tumour suppression [44].
Telmisartan inhibits JNK, a subfamily of MAPK, inhibiting down-
stream c-Jun expression in a HIPO/YAP1-dependent manner [43].
HIPPO/YAP1 signalling is also implicated in Ang Il-mediated
proliferation in intrahepatic cholangiocarcinoma (iCCA), with ARBs
disrupting AGTR1+ cancer-associated fibroblast (CAF) MFAP5/
Notch1 signalling by impeding YAP/TEAD nuclear translocation
and reducing tumour proliferation (Fig. 1) [55].

Cell cycle arrest is another mechanism downstream of AT1R
inhibition. ARBs downregulate cyclin D1 across multiple cancer
models [56-59], and telmisartan reduces cyclin A2 and CDK2 in
oesophageal cancer xenografts [60]. AT1R inhibition has been
shown to induce GO/G1 [53], G2/M [48], and S-phase [60] arrests,
although the precise mechanism and cell type specificity is not yet
fully understood. Despite this, cell cycle inhibition is a recurring
hallmark of the anti-tumour effects of AT1R inhibition.

Metastasis/Migration/invasion. AT1R activation drives cellular
processes critical for cancer progression and metastasis, including
migration, invasion, and epithelial-mesenchymal transition (EMT),
across multiple tumour types. In breast cancer, AGTR1-
overexpressing MCF-7 cells exhibited elevated EMT markers (p-
Smad, Smad4, Snail) as well as enhanced migration and invasion.
In vivo, these cells formed xenografts with reduced E-cadherin and
increased vimentin and matrix-metalloprotease 9 (MMP-9) expres-
sion [61]. Conversely, ARBs reduced colony formation, migration,
and lung metastases in xenograft models of breast cancer [61, 62].
In contrast, Ang Il was found to only exert an impact on fibroblasts
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co-cultured with 4T1-Luc cells and not 4T1-Luc cells alone [59],
implicating stromal involvement in tumour EMT. Furthermore,
prophylactic losartan treatment was shown to reduce ductal
carcinoma in situ (DCIS) progression and correlated with lower IL-6
and p-STAT3 expression [15]. Losartan also inhibited lymph node
metastases via downregulation of CXCR4/SDF-1a and downstream
FAK/RhoA signalling [50].

In CRC, Ang Il increased ZEB1 expression and promoted
migration. Whilst treatment with both irbesartan and an AT2R
inhibitor inhibited migration, only irbesartan reversed Ang II-
induced ZEB1 and vimentin expression and E-cadherin down-
regulation. These results indicate an AT1R-specific effect on EMT
drivers such as ZEB1, vimentin, and E-cadherin [63]. Similarly,
losartan and candesartan inhibited CRC cell migration, inhibiting
MMP-3 and MMP-9 expression while restoring E-cadherin [46, 57].
These effects were validated In vivo, where irbesartan reduced
ZEB1-positive infiltrating cells in CRC liver metastases, and
valsartan decreased lung metastases in CT-26 xenografts [63, 64].

Similar AT1R-mediated effects on EMT, migration and invasion
have been reported in a wide variety of cancer subtypes [65].
Telmisartan reduced IL-6 expression in gastric cancer [66], and in
lung cancer lowered TGF while increasing E-cadherin expression
[67]. Ang Il upregulated MMP-2, -9, and -14 in lymphoma, which
was reversed by valsartan treatment [68]. Additionally, in prostate
cancer, AT1R-agonistic autoantibodies have been shown to
enhance invasion [40]. While AT2R and MasR have been
implicated in EMT in CRC and ovarian cancers [63, 69], AT1R
appears to have a more significant role in ovarian cancer, where its
overexpression significantly increased migration [49].

Collectively, these findings support a model in which AT1R
promotes EMT, invasion, migration, and metastasis through
regulation of transcription factors, extracellular remodelling, and
immune/stromal modulations. The interplay between AT1R, AT2R
and MasR may shape these effects, but AT1R blockade remains
central to limiting metastatic progression across cancer types.

Angiogenesis. Angiogenesis, the formation of new blood vessels
from pre-existing vasculature, is critical for tumour growth,
invasion, and metastasis [70]. While AT1R-dependent angiogenesis
is well defined in cardiovascular tissue [1], increasing evidence
implicates AT1R in pathological angiogenesis across several
cancer types.

In breast cancer, ATIR expression correlates with higher
vascular density [17]. Analysis of The Cancer Genome Atlas (TCGA)
data further linked AGTR1 to angiogenesis-related NF-kB gene
targets [71], supported by in vitro and In vivo studies showing
increased vascularisation via CARMA3/Bcl10/MALT1 signalling and
inhibition of p-IkB by losartan [10]. Similarly, AGTR1 overexpres-
sion increased angiogenesis and microvessel density (MVD), while
losartan reversed these effects. It has also been noted that
prophylactic losartan reduced progression from DCIS to invasive
cancer, increasing vessel diameter but not number, whilst
reducing VEGFa levels [15].

Telimisartan has been shown to downregulate Bcl-2, previously
associated with VEGF induction, in lung cancer cells [47, 72],
whereas losartan was found to inhibit Ang Il-induced VEGFA and
IL-8 expression in liver cancer [73]. Additionally, HCC tissue
showed high AT1R levels, correlating with VEGFa and MVD which
candesartan treatment was able to reduce [74]. It was also
demonstrated that Ang 1-7 inhibits VEGF expression and MVD in
both lung and liver cancer [75]. In both these studies, Ang 1-7
treatment downregulated AT1R expression, with a ~ 4-fold reduc-
tion of ATTR mRNA observed in liver cancer [45]. The effect of Ang
1-7 in lung cancer was only partially supressed by a MasR
inhibitor, implicating AT1R downregulation in the total effect [75].

Other cancer subtypes show similar trends. Losartan reduced
VEGF and CD34 expression in mRCC [76], though lower-dose
treatment paradoxically increased vascular permeability [77]. miR-

Oncogene (2026) 45:479 - 490



410 (micro-RNA targeting AT1IR mRNA) reduced CD31 staining in
pancreatic cancer xenografts [54], further implicating ATIR in
angiogenesis. Whilst the precise mechanisms remain to be fully
understood, these studies collectively support a broad role for
AT1R in tumour vascularisation across multiple cancer types.

Tumour microenvironment effects. Angiogenic and metastatic
processes contribute to the conditions of the tumour microenvir-
onment (TME), a complex, active driver of cancer progression,
composed of immune and stromal cells, extracellular matrix, and
blood vessels [78]. Given its role in processes such as EMT [61],
inflammation [15], fibrosis [46] and angiogenesis [61], ATIR
signalling directly contributes to TME maturation.

Losartan has been shown to reduce the mRNA expression of
several TME-related proteins, including TGFB1, integrin 33, CTGF,
IL-1, IL-4, IL-10, TNFa, and MIP-1a/CCL3 [15]. In tumour-bearing
mice, ACEi treatment suppressed elevated serum levels of TGFf1,
1I-2, -4, 1I-10, and TNFa [79]. Interestingly, tumour suppression was
dependent on neutrophils, as this effect was eliminated in
neutrophil-depleted mice. Administration of captopril was shown
to promote anti-tumour neutrophil phenotypes that reduced
tumour growth in untreated mice after adoptive transfer of splenic
cells from treated animals [79]. This supports other studies where
Ang Il was found to have no effect on 4T1-Luc cells in vitro, but co-
culture with fibroblasts revealed an Ang lI-driven increase in
fibronectin, vimentin, and a-SMA [59] - a marker of dense stroma
that impairs T-lymphocyte recruitment and is downregulated by
losartan [80]. Losartan has also been shown to promote
macrophage polarisation from pro-tumoural M2-like to anti-
tumoural M1-like phenotypes [81], as well as alleviate stromal
density by reducing collagen, a-SMA, TGF, and HIF-1a [81, 82].

Further modulation of immunosuppressive cells by ARBs has
also been observed. ARBs counteract the effects of CAFs, likely via
inhibition of TGFB and IL-10 [82]. These CAFs impaired T-cell
recruitment, while ARB treatment upregulated several T-cell
activation markers [82]. Metastasis-associated fibroblast (MAFs)
in colorectal cancers have been shown to express elevated levels
of Agt and ATI1R [83] with Ang Il enhancing MAF-mediated
extracellular matrix (ECM) remodelling. In contrast, dual inhibition
with captopril and losartan inhibited this effect [83]. The lack of
significant effect of AT2R activation or inhibition on ECM
remodelling suggests that this process is primarily driven by an
ACE/Ang I/AT1R-mediated mechanism [83]. In intrahepatic cho-
langiocarcinoma (iHCC), losartan reduced stromal density by
inhibiting YAP1/LAT1 dephosphorylation and MFAP5-mediated
Notch1 signalling from AT1R+ CAFs [55] (Fig. 1). Data obtained
also demonstrated that losartan depleted immunosuppressive
CAFs and increased CD8 + T-cell infiltration [84].

Consistent with these findings, losartan and candesartan
reduced fibrosis in CT-26 xenograft models of CRC [46, 57, 64].
Although one study reported increased TNFa expression after
losartan treatment [46], this contradicts broader findings, suggest-
ing methodological variability [57, 85]. Candesartan also out-
performed 5-FU in reducing collagen deposition [57]. Losartan
additionally inhibits the recruitment of metastasis-promoting,
inflammatory monocytes. Intriguingly, this was mediated via CCR2,
as evidenced by a similar effect in AGTR/~ mice, raising the
possibility of losartan-mediated off-target effects [86]. It is worth
noting, however, that mice have 2 isoforms of ATIR that are
products of separate genes (AGTR1a and AGTR1b), and that the
AGTR/~ mice used in this study were only shown to be negative
for AGTR1a, and not AGTR1b [87], indicating a possible effect on
this, yet to be fully understood, ortholog of AT1R.

Together, these studies provide compelling evidence for the role
of ARBs, if not AT1R signalling directly, in shaping TME architecture
and function. Targeting this pathway should help alleviate a tumour
suppressive TME, particularly through modulation of fibroblast
activity, immune cell recruitment, and stromal remodelling.
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Combination with other anti-cancer therapeutics. Therapeutic
resistance remains a significant barrier to effective cancer
treatment, often requiring combination therapy to overcome the
adaptive escape mechanisms that cancer cells initiate [88]. Due to
their role in modulating the TME, angiogenesis, inflammation and
proliferation, ARBs are emerging as mechanistically supportive
adjuncts across therapeutic classes.

Targeted therapy: Despite tyrosine kinase inhibitors (TKls), such
as everolimus or sunitinib in RCC [89], forming a critical class of
targeted therapies that modulate key oncogenic signalling
cascades, their use is limited due to the development of resistance
and adverse effects [90]. RAS inhibition, particularly via ARBs, may
enhance TKI tolerability and efficacy. Retrospective studies have
shown that RASi use correlated with improved OS and PFS in
mRCC patients receiving sunitinib, an anti-VEGFRs and PDGFRs
therapeutic (Table 2), likely through mechanisms beyond blood
pressure control [30]. In HCC, RASi combined with sorafenib, an
anti-VEGF TKI, improved median OS compared to monotherapies
(19.5 vs 10.9 vs 9.7 months, RASi + sorafenib vs RASi vs sorafenib)
[26]. Meanwhile, use of RASi and EGFR-TKI combinations in NSCLC
patients suggested a trend toward longer PFS, though OS
differences were not significant, possibly due to small samples
sizes [91, 92].

These results are corroborated in vitro and in vivo, where
losartan combined with lenvatinib (anti-VEGFR TKI) reduced
endothelial and tumour cell proliferation, angiogenesis, and
tumour burden in Huh7 xenografts [73]. Conversely, although
losartan mitigated axitinib (VEGFR inhibitor)-induced hyperten-
sion, it did not enhance tumour suppression, indicating mechan-
istic overlap [77]. Other studies have shown telmisartan reduced
stem cell markers in rociletinib-resistant H1975 cells, with the
combination of telmisartan, CFM 4.16, and sorafenib significantly
reducing H1975-xenograft tumour volume [67]. Mechanistically,
telmisartan suppressed EGFR and MET phosphorylation, implicat-
ing AT1R inhibition in resistance modulation [67].

Chemotherapy: Cytotoxic chemotherapies, including DNA-
damaging agents (e.g., 5-FU, cisplatin, and doxorubicin) and
mitotic inhibitors (e.g., paclitaxel), remain foundational therapies
in cancer care but are limited by toxicity and resistance [93].

Doxorubicin, though effective, induces cardiotoxicity [94].
Valsartan reduced doxorubicin-induced reactive oxygen species
(ROS) and apoptosis in cardiomyocytes without impairing its anti-
cancer activity. Furthermore, co-culture with mesenchymal stem
cells enhanced this protective effect [94]. ARBs also reduced
doxorubicin-induced cardiotoxicity In vivo, potentially via TGFp
and MAPK modulation [95, 96]. In addition, acute myeloid
leukaemia cells with immune/apoptotic gene signatures have
been shown to become more sensitive to doxorubicin after ARB
treatment [97].

5-fluorouracil (5-FU), an inhibitor of DNA synthesis, has shown
synergy with valsartan in CRC models, increasing apoptosis,
(increased levels of Bax and p53 plus decreased Bcl2 levels found),
inhibiting migration (decreased MMP-2 and MMP-9 levels) and
reducing tumour burden In vivo, though not as significantly as
5-FU monotherapy. Combination therapy reduced VEGF, Col1AT1,
and IL-6 expression and reduced fibrosis [64]. Both losartan and
candesartan demonstrated synergy with 5-FU in fibrosis suppres-
sion, though TNFa expression was variably modulated depending
on which ARB was utilised, indicating a drug-specific mechanism
[46, 57]. ARBs also reduced 5-FU side effects with losartan
reducing mucositis [85] whilst telmisartan mitigated cachexia and
simultaneously improved tumour response in gastric cancer [66].
Losartan also synergistically enhanced 5-FU-induced growth
inhibition in OSCC [98].

Gemcitabine and nab-paclitaxel (GEM/AB) are a standard of care
therapy in pancreatic ductal adenocarcinoma (PDAC). Irbesartan
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resensitised PDAC cells and organoids, improved GEM/AB efficacy,
and reduced tumour growth in a variety of models, from in vitro
cell lines to patient-derived organoid xenografts [43]. Irbesartan
reduced nuclear YAP1, supressed c-Jun and decreased stemness
and iron metabolism [43]. Other ARBs also enhanced paclitaxel
activity, particularly at low doses [99].

In NSCLC patients, RASi improved survival in carboplatin/paclitaxel-
treated patients, but not when bevacizumab (anti-VEGF) was
included, suggesting overlapping anti-angiogenic effects of bevaci-
zumab and RASi [100]. This supports observation that platinum-
resistant NSCLC cells overexpress AT1R and VEGF, with olmesartan
treatment suppressing growth in platinum-resistant tumours [101].
Additionally, Ang 1-7, possibly acting through AT1R downregulation,
inhibited growth in platinum-resistant xenografts [75]. Paclitaxel
efficacy was also enhanced by losartan in ovarian cancer models,
likely by reducing ECM stiffness and improving drug penetration [80].

Due to the nature of chemotherapeutics being used in
combination, it is difficult to untangle the precise mechanism of
the increased efficacy seen with concomitant ARB treatment.
Despite this, ARBs have been shown to directly augment the effect
of DNA-damaging agents (doxorubicin, gemcitabine, and 5-FU)
individually as well as the anti-mitotic, paclitaxel. These results are
corroborated in combined therapies, indicating that targeting
AT1R signalling is a useful addition to the arsenal of chemother-
apeutic regimes, boosting efficacy and reducing side effects,
potentially resulting in improved survival and quality of life.

Immunotherapy: Immune checkpoint inhibitors (ICls) have revo-
lutionised cancer therapy, yet TME-related barriers, such as dense
stoma and fibrosis, limit their efficacy. AT1R inhibition may relieve
these constraints. Unsurprisingly, retrospective cohort studies
found that in anti-PD-1/PD-L1 treated NSCLC patients, RASi use
improved PFS and demonstrated a non-significant improvement
in OS, possibly due to the small sample size [102]. In two larger ICI
cohort studies, ARB users had significantly improved OS vs non-
users, a stronger effect than other RASi agents [103].

Tumour microenvironment-activated ARBs (TMA-ARBs) were
shown to more effectively reduce collagen, a-SMA, and solid stress
in breast cancer models, compared to free ARBs. TMA-ARBs
enhanced anti-PD-1 and anti-CTLA-4 efficacy in three murine
models, including one previously non-responsive to ICls, where
cure rates reached 50% with combination therapy [82]. These
TMA-ARBs also increased immune cell infiltration, polarised
macrophages towards the anti-tumour M1 phenotype and
decreased immunosuppressive CAF signalling molecules (CXCL3
and FasL) [82]. Likewise, losartan increased M1-TAMs, reduced M2
TAMs and improved anti-PD-1 efficacy via stromal remodelling in
4T1-Luc models [81].

Taken together, these results indicate that modulation of AT1R
signalling by ARBs provides a broad potential to enhance cancer
therapeutics across modalities. By normalising the TMA, inhibiting
pro-oncogenic signalling, reducing drug toxicity and synergisti-
cally enhanced efficacy, ARBs show promise as combinatorial
partners with targeted, cytotoxic, or immune-based therapies.

Clinical evaluation of RASi in cancer

Despite substantial preclinical evidence implicating AT1R signal-
ling in cancer progression and varied (but often positive)
outcomes from meta-analyses of clinical observational studies
and retrospective cohort studies, trials specifically designed to
evaluate ARBs in oncology remain limited. Many trials have
instead focused on ARB-mediated mitigation of cardiotoxicity
associated with therapies such as doxorubicin or trastuzumab
(Table 3). Initially, candesartan was shown to reduce cardiotoxic
events in breast cancer patients receiving anthracycline therapy,
with or without trastuzumab [104]. A follow up study found this
effect to be less pronounced at 2 years, although some
measurements were modestly protected [105]. No significant
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protective effect was shown by another study investigating
candesartan adjuvant therapy in HER2+ breast cancer patients
receiving trastuzumab, although candesartan treatment was not
started until 3 months after anthracycline treatment [106].
Interestingly, AT1R and HER2 expression in breast cancer appears
to be mutually exclusive [10], implying that candesartan may not
function well in these cancers. The PRADA Il study investigating
the protective effects of valsartan or sacubitril/valsartan in
anthracycline-induced heart dysfunction has added further data
suggesting no cardioprotective effect of RASi in breast cancer
[107] (Table 3).

In pancreatic cancer, where preclinical data is particularly
strong, clinical studies are exploring ARB combination therapies
(Table 3). Candesartan with gemcitabine in advanced PDAC
demonstrated a dose-dependent improvement in PFS, although
this fell short of the 5-month PFS target [108]. Phase 1 dose
escalation to 32 mg candesartan, which had been tolerated in
HER2+ breast cancer patients, was not tolerated in advanced
PDAC patients, potentially reflecting the higher burden of
disease-related comorbidities in this cohort. Consequently, ARB
combination therapy may warrant further evaluation in earlier-
stage or locally advanced PDAC patients, where treatment
tolerance and efficacy could differ from those observed in the
metastatic setting.

More encouraging results were observed with losartan plus
FOLFIRINOX (folinic acid, fluorouracil, irinotecan and oxaliplatin)
and proton radiation in locally advanced, unresectable PDAC
patients, achieving an RO resection rate of 61%, approaching the
65% rate reported in the less advanced, borderline resectable
patients not treated with losartan [109]. However, a randomised
controlled trial combining losartan, nivolumab (anti-PD-1), FOL-
FIRINOX and stereotactic body radiation therapy (SBRT) found no
significant improvement in RO resection rates, PFS, OS or
pathological completed response [110]. This discrepancy could
reflect differences in radiation modality or surgical assessment
criteria. Ongoing studies are investigating losartan in combination
with paricalcitol and hydroxychloroquine to modify the TME and
improve resectability, as well as with hypofractionated radiation in
borderline or locally advanced disease, with quality of life as a
secondary endpoint (Table 3). Despite inconsistent results, ARBs,
particularly losartan, appear safe and moderately effective in
combination with standard PDAC treatment regimens.

Beyond PDAC, ARB combinations are under investigation in other
cancer types. In osteosarcoma, a phase 1 study evaluating losartan
plus sunitinib in relapsed or refractory patients is underway, assessing
preliminary anti-tumour activity (Table 3). The ability of ARBs to
modulate the TME and enhance ICI efficacy is also being clinically
assessed. In glioblastoma, losartan is under evaluation for its effects
on cerebral blood flow, solid stress, and synergy with immune and
radiotherapies, with supporting preclinical data showing efficacy in
murine models [111]. Similarly, a phase 1 trial is assessing losartan,
pembrolizumab (anti-PD-1) and SBRT in advanced head and neck
squamous cell carcinoma (HNSCC), with secondary endpoints
focusing on anti-tumour efficacy (Table 3).

While clinical evaluations of ARBs remain limited compared to
preclinical and observational studies, existing evidence supports their
safety and potential use in combination therapies. Pancreatic cancer
has been the primary focus, particularly with chemoradiation, though
results remain variable and are often limited by small sample sizes or
design constraints. Although consistent clinical benefit has yet to be
demonstrated, the capacity of ARBs to modulate the TME, especially
in enhancing immunotherapeutic response, remains a compelling
rationale for continued investigation.

DISCUSSION AND FUTURE DIRECTIONS
Compelling preclinical evidence implicates AT1R signalling in key
oncogenic processes fuelling significant interest in repurposing
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ARBs as anti-cancer therapeutics. ARBs have been shown in
various pre-clinical models to inhibit several hallmarks of cancer
across a wide range of cancer types, including many with unmet
clinical need, via the suppression of key oncogenic signalling
cascades (Fig. 1). ARB treatment reduces tumour burden,
metastasis, angiogenesis, and may even prevent tumour initiation.
Mechanistically these outcomes reflect the promotion of less
invasive phenotypes, reduced pro-inflammatory cytokine expres-
sion and suppression of key signalling pathways (Fig. 1). Despite
this, the translation of these preclinical successes into robust
clinical benefits for patients remains an inconsistent and often
frustrating endeavour.

Barriers to clinical success

Clinical trials and retrospective analyses have yielded mixed
results, with some suggesting ARBs but not ACEis offer protective
effects, particularly in pancreatic cancer where losartan improved
tumour resectability. However, trials are often underpowered or
confounded by pooled analyses of RASis as a single drug class.
There is also the suggestion that the dosage required to induce
anti-cancer effects in humans is higher than can be tolerated. Even
with ongoing trials, more robust data on the direct anti-cancer
effects of ARB therapeutics in large cohorts are required.

Tumour heterogeneity. Cancer is a highly heterogenous disease,
with different subtypes exhibiting distinct molecular profiles
which are often dependent on different signalling cascades. RAS
signalling may be more relevant in certain cancer subtypes, for
example HER2 and AT1R expression appears to be mutually
exclusive in breast cancer patients [10], indicating a clear need for
biomarker-driven patient stratification.

RAS signalling complexity. The RAS is a complex signalling
pathway [1] (Fig. 1). Inhibition of one component, e.g. ATIR,
could trigger compensatory activation of parallel pathways such
as EGFR signalling. Additionally, AT1R can transactivate other
GPCRs [1], many of which remain poorly characterised in
oncology. Further, the interplay between the ACE/Ang II/AT1R
axis and the counter-regulatory ACE2/AT2R/Ang 1-7/MasR axis
likely influence the various outcomes seen in studies. Not only is
there an interplay between these axes, but also between the local
and systemic RAS, which may interact to introduce further
variability in response. llluminating the precise interaction of the
RAS components in a cancer specific context may allow further
refinement of treatment strategies.

Dosing, drug delivery, and combination therapies. Whilst many
preclinical studies have attempted to simulate clinically relevant
therapeutic doses, many studies utilised supra-therapeutic ARB
doses not feasible in patients. Achieving effective drug concen-
trations in the TME remains a challenge, compounded by tumour
and stromal heterogeneity. Novel delivery strategies, such as TMA-
ARBs, have shown preclinical promise by enhancing efficacy and
limiting systemic toxicity [82]. ARBs demonstrate synergy with
multiple anti-cancer agents, yet several rational combinations,
including cisplatin and ICls, remain clinically untested despite
preclinical success [82, 99, 101].

Unlocking the potential of AT1R inhibition in cancer

There has been 30 years of advancement since the approval of the
first ARB, losartan [112]. While the repurposing of approved ARBs
offers reduced development costs, established safety profiles and
well characterised pharmacokinetics, exploration of alternative
therapeutic modalities could unlock the therapeutic potential of
AT1R inhibition and yield better patient outcomes.

Targeted drug delivery systems. Nanoparticle and liposome-based
delivery systems, validated in mRNA vaccine platforms [113], could
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localise ARB activity to the TME, minimising systemic side effects
and improving efficacy. Preclinical studies using pH-sensitive
polymers linked to ARBs demonstrated targeted release at tumour
sites, enhancing tumour response and reducing immunosuppres-
sion [82]. Such approaches may also allow dose escalation beyond
the current maximum tolerated dose.

Peptide therapeutics. The first Ang Il antagonist, saralasin, showed
limited success due to poor stability and bioavailability [114].
However, modern peptide engineering may enable stable AT1R-
binding peptides that either block signalling or bias the receptor
to transactivate beneficial signalling pathways, potentially result-
ing in better protection against chemotherapy-induced cardio-
toxicity while inhibiting cancer-related pathways.

Gene Therapy/RNAi interference and targeting multiple RAS compo-
nents. Approaches such as RNA interference or gene therapy
could offer sustained AT1R inhibition. Modulating multiple arms of
the RAS, for example combining AT1R inhibition with Ang 1-7
treatment, could yield more robust anti-cancer effects [115]. Whilst
there are several approved gene therapies, delivering these
agents to the tumour cells remains a challenge.

Antibody therapeutics. Many monoclonal antibody (mAb) ther-
apeutics are currently approved or in development for the
treatment of cancer [106, 116]. The use of mAbs offers high
affinity and selectivity, potentially overcoming any issues with off-
target effects and improving receptor blockade compared to
small-molecule inhibitor ARBs. One recombinant anti-AT1R mAb
has been shown to inhibit breast cancer cell growth, in vitro and In
vivo, to a greater extent than losartan [117]. Considering this
increased efficacy vs losartan, it is possible that humanised or fully
human, affinity matured anti-AT1R mAbs could have significant
benefit on patient outcomes. Moreover, the recent development
of nanobodies targeting AT1R that stabilise an inactive state of
this receptor [118], resulting in comparable anti-hypertensive
activity to losartan [119], could potentially be utilised in a cancer
therapy context. In addition, modern antibody engineering
techniques could generate anti-AT1R therapeutics with the
capability to exert Fc-mediated effector functions (antibody-
dependent cell-mediated cytotoxicity (ADCC), antibody-
dependent cellular phagocytosis (ADCP), or complement-
dependent cytotoxicity (CDC)) and harness the immune system
to induce cancer cell death.

Further investigation. Whilst extensive research has been con-
ducted into RAS, the role of AT1R signalling remains to be fully
understood. Further studies are required to clarify its context-
specific functions and address key unanswered questions before it
can be fully established as an anti-cancer therapy. It may also be of
benefit to investigate the potential of ARBs/AT1R targeting agents
in high-risk populations as a preventative therapy.

Comprehensive preclinical evaluations. Characterisation of AT1R
and interacting component expression across a wider range of
cancer types and subtypes, including primary, metastatic, and
stromal compartments is needed. Systematic analysis of a range of
AT1R targeting treatments, including mAb therapies, in multiple
preclinical models, in combination with standard-of-care therapies
across an array of cancers would bolster current understanding.
Molecular analysis of the role of ATIR, including downstream
signalling pathways, receptor transactivation, interaction with
other cancer-related proteins and cytokines, and effects on cell
metabolism need to be undertaken to clarify disease-specific
mechanisms.

Well-designed clinical trials. Whilst we await the results of key
clinical trials in this field of research, further prospective,
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randomised, controlled clinical trials are required. Such trials
would specifically be designed to evaluate the efficacy of AT1R
modulation in well-defined cancer subtypes. Appropriate stratifi-
cation of large cohorts based on AT1R and other RAS component
expression levels and activity would allow better understanding of
the role of AT1R in cancer. Utilising exploratory biomarker analyses
within clinical trials would also allow identification of predictive
markers of AT1R modulation.

Another consideration within these trials is the specific
targeting of the TME with AT1R modulating agents to determine
whether off-target effects can be prevented whilst exerting a
potent anti-cancer impact. Analyses of immune cell infiltration,
angiogenesis, and stromal remodelling would be valuable
secondary endpoints in such trials. Investigating the role of
AT1R in cancer, the use of novel therapeutic strategies and
targeted drug delivery systems is key to the development of
improved therapies needed to enhance current treatment options
and improve outcomes for many cancer patients.

CONCLUSION

The RAS, and specifically AT1R, is increasingly recognised as a
significant player in a range of cancer-related processes across a
variety of cancer types, making it a viable target for therapeutic
intervention. Despite this, the full therapeutic potential of
targeting AT1R has yet to be realised, making further research
and clinical investigation essential. Numerous recent studies have
demonstrated the overexpression of AT1R in malignant tissues
versus benign and normal tissues, and its overexpression is
frequently correlated with aggressive tumour characteristics and
poorer overall survival.

Targeting AT1R with ARBs has shown promising preclinical results,
namely, inhibiting tumour growth, inducing apoptosis, and reducing
angiogenesis in various cancer models. However, the successful
translation of these results into humans remains a challenge with
limited or inconclusive data being generated to date (Table 3).

The RAS is a complex signalling network with multiple
interacting components and feedback mechanisms and the
oncogenic role of AT1R varies by cancer type and stage, making
it difficult to predict how AT1R modulation will affect different
patients. Therefore, future research must focus on clarifying the
context-dependent role of ATIR in cancer as well as identify
patient populations most likely to benefit from AT1R-targeted
therapy. Well-designed clinical trials are essential to validate both
the preclinical findings and the therapeutic value of ARBs in
oncology. Development of new agents that more effectively
modulate AT1R, such as mAbs, as well as utilisation of targeted
drug delivery systems, may provide a more tenable option to
reduce off target effects and improve patient outcomes.
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