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Proteomic meta-analysis unveils new frontiers for biomarkers
research in pancreatic carcinoma
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Pancreatic carcinoma (PC) is the sixth leading cause of cancer death in both sexes in 2022, responsible for almost 5% of all cancer
deaths worldwide; it is characterized by a poor prognosis since most patients present with an unresectable and metastatic tumor.
To date, the decreasing trend in mortality rates related to the most common cancers has contributed to making pancreatic cancer a
serious public health problem. In the last few years, scientific research has led to many advances in diagnostic approaches,
perioperative management, radiotherapy techniques, and systemic therapies for advanced disease, but only with modest
incremental progress in PC patient outcomes. Most of the causes of this high mortality are, unfortunately, late diagnosis and an
important therapeutic resistance; for this reason, the most recent high-throughput proteomics technologies focus on the
identification of novel biomarkers and molecular profiling to generate new insights in the study of PC, to improve diagnosis and
prognosis and to monitor the therapies progress. In this work, we present and discuss the integration of results from different
revised studies on protein biomarkers in a global proteomic meta-analysis to understand which path to pursue scientific research.
In particular, cancer signaling, inflammatory response, and cell migration and signaling have emerged as the main pathways
described in PC, as well as scavenging of free radicals and metabolic alteration concurrently highlighted new research insights on
this disease. Interestingly, from the study of upstream regulators, some were found to be shared by collecting data relating to both
biological fluid and tissue biomarkers, side by side: specifically, TNF, LPS, p38-MAPK, AGT, miR-323-5p, and miR-34a-5p. By
integrating many biological components with their interactions and environmental relationships, it's possible to achieve an in-
depth description of the pathological condition in PC and define correlations between concomitant symptoms and tumor genesis

and progression. In conclusion, our work may represent a strategy to combine the results from different studies on various

biological samples in a more comprehensive way.
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INTRODUCTION

Pancreatic carcinoma (PC) is the sixth most common cause of
cancer-related deaths in 2022, accounting for nearly 5% of all
cancer deaths worldwide [1]. Currently, the causes of PC are not
yet fully identified [2], but certain risk factors have been identified
and are classified as non-modifiable (age, sex, blood group, family
history, and genetic susceptibility, diabetes) and modifiable
(intestinal microflora, smoking, alcohol, chronic pancreatitis,
obesity, dietary factors, infection). At clinical presentations,
patients typically present with jaundice due to invasion and
obstruction of the common bile duct when the PC is located in the
head of the pancreas. Alternatively, they may exhibit nonspecific
symptoms such as back pain and weight loss. The current
methods for establishing the diagnosis of PC include ultrasono-
graphy (US), endoscopic ultrasonography (EUS), endoscopic
retrograde cholangiography (ERCP), computerized tomography
(CT) or magnetic resonance imaging (MRI), with or without guided

percutaneous fine-needle biopsy, ascites cytology or exploratory
biopsy under laparoscopy or open surgery diagnosis [3].
Approximately 80-85% of patients are diagnosed with unresect-
able disease. This is largely due to the encasement of major
mesenteric vessels or metastatic disease to the liver, peritoneum,
or other distant sites. As a result, the 5-year survival rate is about
7.2% in the USA. [4]. Despite advances in diagnostic approaches,
perioperative management, radiotherapy techniques, and sys-
temic therapies for advanced disease, there is only modest
incremental progress in patient outcomes [4]. Only 20% of
patients with resectable diseases survive for 5 years after surgery,
and most may still die from the disease afterward. The high
resistance of PC to conventional chemotherapy with 5-fluorouracil
represents one of the reasons for this poor prognosis [5].
Radiotherapy alone is largely ineffective. Gemcitabine monother-
apy was demonstrated to improve median survival by just over
1 month, compared with 5-fluorouracil [6]. Within the last decade,
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there have been improvements in clinical outcomes with
combination chemotherapies with gemcitabine/nab-paclitaxel
and 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIR-
INOX), providing median overall survival benefits of 1.8 and
4.3 months, respectively, compared with gemcitabine alone [7, 8].
Although FOLFIRINOX treatment resulted in a lower percentage of
patients experiencing reduced quality of life, it also had increased
toxicity and adverse events, thus preventing its administration to
patients with multiple comorbidities [9]. Recent research on
targeted therapy, immunotherapy, and microbial therapy has
shown that these can be used in combination with traditional
methods for the treatment of PC, such as surgery, chemotherapy,
radiotherapy, and palliative care.

Pancreatic ductal adenocarcinoma (PDAC) is the most common
type of PC, and 80-90% of these tumors are invasive; this cancer is
characterized by a progression from normal tissue to invasive
lesions with specific morphological characteristics. The process
starts when acinar cells transform into a ductal phenotype in
response to specific stimuli, a phenomenon known as acinar-to-
ductal metaplasia (ADM). When combined with an oncogenic
“hit,” these cells progress to a pathogenic phenotype that
eventually develops into Pancreatic Intraepithelial Neoplasia
(PanIN). The development of the disease involves a transition
from pre-invasive stage -which is graded on a three-tiered scale as
PanIN-1 (PanINTA and PanIN-1B subtypes), PanIN-2, and PanIN3-
to the invasive PDAC stage. So, pre-invasive PanIN lesions progress
from normal ductal epithelium through PanIN stages 1A, 1B, 2,
and 3, ultimately advancing to stage 4 as invasive and/or
metastatic PDAC. The process shows increasing nuclear atypia,
loss of normal architecture and increased mitoses, and progresses
with an increase in cellular invasiveness and branching of the
basement membrane and extracellular matrix with metastasizing
to distant organs [10]. The majority of PDACs are solid, firm, and
infiltrative tumors with poorly defined margins. Microscopically,
PDAC is characterized by neoplastic duct-like structures in a dense
functional stroma composed of an extracellular matrix and
extensive fibrosis (desmoplasia), which is the cause of resistance
to therapies [11]. Desmoplastic stroma is characterized by the
presence of cellular components, such as cancer-associated
fibroblasts (CAFs), immune cells, and endothelial cells, and
acellular components, such as collagens, laminin and cytokines
in the extracellular matrix (ECM) [5], which is a physical barrier to
the penetration of therapeutics [10]. The aggressive nature of
PDAC is driven by the inflammatory process and an extensive
stromal network in the tumor microenvironment (TME). Pancreatic
stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) play a
crucial role in promoting the survival, growth, and proliferation of
cancer cells. This, in turn, supports cancer metastasis and drug
resistance [6]. PDAC tumor growth and progression are enhanced
by a proinflammatory and immunosuppressive program charac-
terized by the production of cytokines, growth factors, and other
signaling molecules in the TME. Therefore, the current scientific
and clinical challenge is targeting cancer cells and TME to induce a
favorable therapeutic response [6]. Advancements in under-
standing the molecular mechanisms of PDAC in recent years
have led to the identification of CA19-9 as the common serum
tumor biomarker: this biomarker is considered the preferred
choice for early screening; combining CA19-9 with CA125, CEA,
and microRNAs leads to an increase of sensitivity, specificity, and
accuracy by 84% compared to using CA19-9 alone [5]. Moreover,
new potential biomarkers are identified in circulating cell-free
DNA (CfDNA) and mutation-specific circulating cell-free tumor
DNA (ctDNA), such as the K-RAS gene mutations in codon 12:
there is an important correlation between the concentrations of
these two factors and treatment response. About the presence of
biomarkers, a repertoire of proteins in fibroblasts has been
identified after the treatment with conditioned medium from MIA-
PaCa-2 human pancreatic tumor cell line, such as ITGB3, TGFB1,
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and TGFB2 (involved in fibroblast movement and apoptosis) and
SMAD3, STAT3, and BAGS3 (involved in chemotaxis activation and
cell adhesion) [12]. In recent years, proteomics based on mass
spectrometry (MS) analysis have taken a central role in the
investigation of potential biomarkers since they offer the
opportunity to identify innovative molecular pathways and
quantify the levels of differentially expressed proteins (DEPs)
[13]. Particularly, functional proteomics turns out to be useful for
combining the examination of protein activation, protein-protein
interactions, and activated pathway analyses [14]; it can be used
to classify the type of cancer, to study the prognostication and the
prediction of response to therapy, and also to discover tool for
targeted therapy. In contrast to genomic analysis, which defines
potential gene products, proteomics reflects the actual protein
expression in response to translational control and degradation or
regulation of protein activity through post-translational modifica-
tions. It has been shown that protein expression data correlate
better with drug sensitivity or resistance than data from other
“omics” studies so these analyses can be used to study
multifactorial pathologies, such as cancer [15].

In this study, we have gathered proteomic research from the
past decade. We have analyzed protein biomarkers, categorizing
them as tissue/cellular markers or circulating markers. Addition-
ally, we performed a meta-analysis using the Ingenuity Pathway
Analysis (IPA) bioinformatic tool to extract new and detailed
information from the collected dataset.

RESULTS

Distribution and analysis of protein biomarkers across
biological fluids and tissues

Table 1 lists the protein markers, distinguishing them by biological
fluid/cells/tissue of origin and their respective trend, biological matrix,
tumor type, number of articles, PANTHER protein classification, and
reference. We find proteomics and immunohistochemistry studies
among the main assay types used in biomarker discovery. In
particular, proteomic tools can be divided into antibody-based
(including western blotting, enzyme-linked immunosorbent assay
(ELISA), immunohistochemistry (IHC), and protein microarray) and
non-antibody-based (including protein mass spectrometry-based
technology) [14]. Interestingly, most modulated proteins resulted
from studies conducted on biological fluids (74.2%), such as
peripheral blood, plasma, serum, urine, and pancreatic juice [16-48].
In comparison, only 25.8% of proteins are involved in studies
conducted on cellular models or sections of tumor tissue. On the one
hand, studying a tissue biomarker could be extremely useful in
characterizing the tumor type, identifying tumor staging, or following
the appropriate therapeutic strategy. According to “PANTHER Protein
classification” (Fig. 1A), concerning circulating protein biomarkers,
20.9% of proteins are intracellular signaling molecules (ISMs), 9.0% of
proteins are transfer/carrier proteins (T/CPs), and metabolite inter-
conversion enzymes (MIEs), 7.5% correspond to cytoskeletal proteins
(CPs). Considering cells/tissue proteins biomarkers listed in Table 1
and Fig. 1B, the most proteins found (29.2%) are related to metabolite
interconversion enzymes (MIEs), 12.5% of proteins are cell adhesion
molecules (CAMs), while 8.3% of proteins are related to protein-
binding activity modulators (P-BAMs), transmembrane signal recep-
tors (TSRs), calcium-binding proteins (C-BPs), and cytoskeletal proteins
(CPs) [49-53]. Proteins involved in the mentioned protein classes are
given in the “Panther Class” column of Table 1. All biomarkers used in
this meta-analysis are related to pancreatic cancer, in particular fluid
and tissue biomarkers linked with PC/PDAC cells or TME are provided
in Table 1—column “tumor type”—with evidence of biomarkers
related to PDAC, different stages of PC and PDAC, and TME, since the
aggressive nature of PC/PDAC is driven by the inflammatory process
and an extensive stromal network in the TME. Specifically, 59.57% of
protein biomarkers are related to PC, biomarkers linked to PDAC
represent 26.60% of the total, 10.64% of biomarkers describe
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Table 1. Pancreatic cancer biomarkers identified in proteomics and immunohistochemistry studies published approximately in the last 10 years with
their respective trend, biological matrix, tumor type, number of articles, Panther protein classification, and references with particular evidence of
biomarkers related to PDAC, different stages of PC and PDAC, and TME are highlited in bold.

Biomarker

MUC5AC
S100P
CEA

GSN

LUM
TIMP-1
CA19-9
PROZ
TNFRSF6B
TFPI

TNC-FN 1lI-C

Survivin
ULBP2
MIC-1
THBS-2
LRG1
TTR
Biglycan (BGN)
PEDF
THBS-2
TGF-B
BIGH3
DTNBP1
AGR2
uPAR
ICAM-1
TIMP-1
ADH
C4BPA
CFB
IGFBP3
PIGR
OLFM4
SYCN
COL6A1
FLNA
ITGAV
TYMP
ACADM
ACADS
ACAT1
APOA4
APOC3
IGFBP2
Nuclear pSTAT3
IL-11
LPO (SAPX)
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Trend

Up
Up
Up
Up
Up
Up
Up
Up
Up
Up

Up

Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Down
Down
Down
Up
Up
Up
Up
Up
Up

Sample

Circulating
DJ

DJ

Plasma
Plasma
Plasma
Serum
Serum
Serum

Plasma
Plasma

Serum

Serum

Serum

Plasma

Plasma

Plasma

Tumor resection
Tumor resection
Tumor resection
Tumor resection
Tumor resection
Serum

PJ

Urine

Serum

Serum

Serum

Serum

Plasma

Plasma

Plasma

Plasma

Plasma

Plasma

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Serum

Serum

Serum

Tumor resection
Plasma

OF

Tumor type

PanIN1A to late-stage PC
PDAC

PDAC

PC

PC

PC

Early-stage PC
Early-stage PC
Early-stage PC

Early-stage PDAC (stage IA/IB/
IIA, stage IIB)

Early-stage PDAC (stage IA/IB/
IIA, stage IIB)

PDAC

PC
Early-stage PC
PDAC

PDAC

PDAC
PC—extracellular matrix
PC

PC-TME
PC-TME

PC

PDAC

PanIN3 PDAC
PDAC

PDAC

PDAC
Early-stage PC
PDAC

PC

Invasive PDAC
PC

PC

PC

PC

PDAC

PDAC

PDAC

PDAC

PDAC

PDAC

PC

PC

PC

PDAC

PC

PC

Number of
articles

4
1
20
1
1
7
24

_ N = W = m a a A A a a a W= W NN R s = m Wm m U s m a2, o NN

T/CPs
T/CPs

Panther class. Ref.

[16]
[17]
[17]
[18]
[18]
S [18]
[19]
[19]
[19]
[20]

CAMs
MIEs
MIEs
MIEs
MIEs

ISMs
MIEs
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Table 1. continued

Biomarker

PPIB (CYPB)
KRT14

Krt13 (Krt1-13)
KRT17

NGAL

THBS3

FLT3

GPRC5A
MYO1F

GPX2

KRT23

PSCA
S100A14
LGALS9C
MBL2

MLCK2
ALDH1A1
Pancreatic lipase
ANXA1

Proline-hydroxylated o-
fibrinogen

CXCL7

AAT

C-reactive protein
IL-10

IL-23

TNFa

IL-1ra

IL-6

IL-8

IP-10

MIP-1b
FGF-10/KGF-2
I-TAC/CXCL11
OSM

OA/GPNMB

SCF

HSP70

OPN
Apolipoprotein A-l
Apolipoprotein A-ll
Transthyretin
Tetranectin
Apolipoprotein E
SYCN

REG1B
AGR2

LOXL2
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Trend

Up
Down
Down
Down
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up

Down
Up
Up
Up
Down
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Up
Down
Down
Down
Down
Up
Up

Up
Up

Up

Sample

OF

OF

OF

OF
Plasma
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Serum
Serum
Tissue
Tissue
Tissue
Plasma

Plasma
Serum
Peripheral blood
Peripheral blood
Peripheral blood
Peripheral blood
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum
Serum

Serum and
plasma

Serum and
plasma

Serum and
plasma

Serum and
plasma

Tumor type

PC
PC
PC
PC
PC
PC
PDAC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC

PC
PC
PC
PC
PC
PC
PDAC
PDAC
PDAC
PDAC
PDAC
PC
PC
PC
PC
PC
PC
PDAC
PC
PC
PC
PC
PC
PC

PC
PC

PC

Number of Panther class.

articles

- N = = a .

O T

- = o WU AN -

W W = B = N NN = = 2 9 23 2 N wunm

CPs
CPs
CPs
T/CPs
CAMs
TSRs
TSRs
CPs
MIEs
CPs
P-BAMs
C-BPs

MIEs
MIEs
C-BPs

ISMs

T/CPs
ISMs
ISMs
ISMs
ISMs

ISMs

ISMs
ISMs
ISMs
ISMs

ISMs—MIEs
T/CPs
T/CPs
MIEs

ISMs
T/CPs

MIEs
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A) Circulating biomarkers
20.90%
m [SMs
m T/CPs
0, m MIEs
53.60% o
m CPs
= NR
9%
7.50%
B) Tissue biomarkers
25.10% 29.20% = MIEs
m CAMs
m P-BAMs
m TSRs
8.30% m C-BPs
m CPs
12.50%
8.30% ’ 8 R&

8.30%

8.30%

Fig. 1 PANTHER protein classification. Protein classification according to PANTHER tool for circulating protein biomarkers (A) and cells/tissue
protein biomarkers (B). Pie charts show the classification of circulating and tissue biomarkers according to their “Family and Protein Class”:
these are grouped into intracellular signaling molecules (ISMs), transfer/carrier proteins (T/CPs), metabolite interconversion enzymes (MIEs),
cytoskeletal proteins (CPs), cell adhesion molecules (CAMs), protein-binding activity modulators (P-BAMs), transmembrane signal receptors
(TSRs), calcium-binding proteins (C-BPs), and non-relevant (NR) group. This classification was obtained by uploading—separately—the entire
dataset of circulating and tissue biomarkers to “PANTHER Protein classification” by “supergrouping of protein families” way.

particular stages of PC/PDAC and 3.19% of biomarkers are related to
TME. The circulating biomarker mucin MUC5AC is upregulated in
stage PanIN1A to late stage of PC; macrophage inhibitory cytokine-1
(MIC-1), alcohol dehydrogenase (ADH), carbohydrate antigen 19-9
(CA19-9), vitamin K-dependent protein Z (PROZ) and tumor necrosis
factor receptor superfamily member 6b (TNFRSF6B) are upregulated
circulating biomarkers related to the early stage of PC. On the other
hand, plasma tissue factor pathway inhibitor (TFPI) and tenascin C
(TNC-FN) are upregulated circulating biomarkers related to the early
stage of PDAC (stage IA/IB/IIA, stage IIB); anterior gradient-2 (AGR2)
and insulin-like growth factor-binding protein-3 (IGFBP3) are upregu-
lated circulating biomarkers related respectively to stage PanIN3 of
PDAC and invasive PDAC. Finally, thrombospondin-2 (THBS-2) and
transforming growth factor-beta (TGF-B) are upregulated tissue
biomarkers linked to the TME of PC. As reported in Table 1—column
“# Articles"—it's possible to notice that 62.77% of biomarkers are

Oncogenesis (2025)14:3

described in only one article mostly related to PC and PDAC but also
to the early stage of PG, early-stages of PDAC (stage IA/IB/IIA, stage IIB)
and TME; in particular tissue biomarkers as biglycan (BGN), pigment
epithelium-derived factor (PEDF) and THBS-2 are related to the TME
and the others to PC/PDAC. The 2.13% of biomarkers (CEA and CA19-
A) are discussed in more than 20 articles—mostly related to PDAC
and the early stage of PC- and 35.11% of biomarkers are described in
a number of meta-analysis articles between two and seven related to
PDAC, PC, stage PanIN1A and late stage of PC, stage PanIN3 and
invasive stage of PDAC.

Functional analysis on fluid biomarkers unveils implications
for cancer, inflammation, and lipid metabolism

In Fig. 2, we report the main pathways where our biomarkers
could be involved, considering only the significant “canonical
pathways” (—log10 (P value) >1.3). Among these, we found three

SPRINGER NATURE
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Wound Healing Signaling Pathway

Tumor Microenvironment Pathway

TREM1 Signaling

Systemic Lupus Erythematosus in B Cell Signaling Pathway

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses
Role of Osteoblasts in Rheumatoid Arthritis Signaling Pathway

Role of JAK family kinases in IL-6-type Cytokine Signaling

Role of Chondrocytes in Rheumatoid Arthritis Signaling Pathway

RAR Activation

Pulmonary Fibrosis Idiopathic Signaling Pathway

Pathogen Induced Cytokine Storm Signaling Pathway

NOD1/2 Signaling Pathway

Neuroinflammation Signaling Pathway

IL-6 Signaling

IL-33 Signaling Pathway

IL-17 Signaling

HMGB1 Signaling

Hepatic Fibrosis Signaling Pathway

Differential Regulation of Cytokine Production in Macrophages and T Helper Cells by IL-17A and IL-17F
Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by IL-17A and IL-17F
Colorectal Cancer Metastasis Signaling

CDX Gastrointestinal Cancer Signaling Pathway

Cachexia Signaling Pathway

Adrenergic Receptor Signaling Pathway (Enhanced)

Activin Inhibin Signaling Pathway

Activation of IRF by Cytosolic Pattern Recognition Receptors

Color by
2-score
Negative value
*Positive value
Zero value
No activity pattern

Size by

Number of genes that
overlap the pathway

®4
&

‘15

S0 55 60 65 70 75 80 &5 90 95 100 105 10 WS 120 125 130  BS

Fig.2 “Canonical pathways” characterization on fluids biomarkers functional analysis: in this bubble blot generated by IPA software, we
show the significant pathways previously described. It is possible to notice how each pathway is characterized by a specific “—log10 (P
value)” -only pathways with a value greater than 1.3 are shown and described in the text- and an absolute “z-score value”"—regarding the
modulation—greater than 2. As described in the legend, orange bubbles are indicative of significantly upregulated pathways (z-score greater
than 2) and downregulated pathways (z-score lower than —2); the size of bubbles depends on the number of biomarkers that overlap the

pathway. This bubble blot has been created using the values of “P value’

carried out by IPA software.

interesting downregulated (z-score < —2) pathways involved in
the inhibition of proliferation and inflammation: retinoic acid
receptor (RAR) activation pathway, CDX gastrointestinal cancer
signaling, and the adrenergic receptor signaling pathway. The
complete list of canonical pathways obtained from the functional
analysis on IPA is provided in Supplementary Table S1.

The “RAR activation” pathway leads to potent anti-proliferative
and anti-inflammatory properties [54-56]; moreover, RARs are able
to repress the activity of transcription factors such as AP-1, which
is involved in cell proliferation and survival and in particular in the
proliferation of cancer cells [55], and NF-kB, which regulates
multiple aspects of innate and adaptive immune functions and
serves as a pivotal mediator of inflammatory genes [56] and plays
a critical role also in cell proliferation and survival [57]. The RAR
pathway has been shown to be an important druggable pathway
both in vitro test and clinical trial. The PI3K-alpha inhibitor
“idelalisib” terminated the phase 1-clinical trial process in 2024
respectively  for metastatic  pancreatic adenocarcinoma
(NCT03878524) and  pancreatic ductal adenocarcinoma
(NCT02468557); the PARP (poly ADP-ribose polymerase) inhibitor
“niraparib” is in 2023 in the phase 2-clinical trial NCT05442749 for
advanced PDAC.

Regarding the inhibition of the “CDX gastrointestinal cancer
signaling”, knockouts of CDX genes exhibit increased colorectal
cancer and CDX products present important roles in cancer
progression and intestinal inflammation [58, 59]. In this scenario,
i.e., the drug “ABBV-621" presents TNFSF10 as the target molecule
within the “CDX gastrointestinal cancer signaling” and “adrenergic
receptor signaling”, and it has completed the phase 1-clinical trial
NCT03082209.

Interestingly, the “adrenergic receptor signaling” pathway was
found inactivated: this pathway is involved in the body’s fight or
flight response since norepinephrine (NE) plays a role in mood and
sleep regulation, and expression of behavior. Specifically, ADRA1-2
receptors have been found to influence cognitive functions such
as working memory, attention, fear, and spatial learning, while
ADRB1-2 receptors function in auditory fear, spatial reference, fear
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memory, and memory retrieval [60]. The inhibition of this pathway
and its related implications could be interesting to study and
monitor as co-symptomatology of PC. Regarding the pathway’
druggability, the drug “anakinra” targets IL-1A and IL-1B within the
adrenergic receptor signaling and it's in phase 2-clinical trial
NCT04926467.

As for the many pathways predicted to be upregulated (z-score
>2), they are involved in many macro-categories such as cancer
signaling, cellular stress and injury, immune response signaling,
neurotransmitters, and nervous system and other disease-
signaling pathways (Fig. 2).

The engagement of pattern recognition receptors (PRRs) results
in the activation of specific genes and subsequent triggering of
innate immune responses; the NOD-like receptors are members of
this family of molecules, helping activate innate immune responses
to cellular stress and stress [61, 62]. NOD1 mutations increase
susceptibility to inflammatory bowel disease, while NOD2 muta-
tions have been associated with susceptibility to Crohn’s disease,
Blau syndrome, and other intestinal innate immune defects.
Aberrant NOD signaling has long been associated with a range of
inflammatory disorders, and its inhibition could be beneficial in the
treatment of disorders such as allergic asthma and type 2 diabetes
mellitus [63]. Interestingly, the drug “ABBV-621" is again involved in
the regulation of this pathway with TNFSF10 as the final therapeutic
target. Moreover, as for the adrenergic receptor signaling,
“anakinra” is also involved in NOD-like receptor regulation.

Moreover, within the “activin inhibin signaling” pathways,
activin A activates the MAPK signaling pathway including P38
mitogen-activated protein kinase (p38-MAPK), further identified as
an upregulated upstream regulator, mostly under inflammatory
conditions and has a crucial effect on innate and adaptive
immune responses and in the pathophysiology of human diseases
such as cancer and fibrotic syndromes [64]. Again “anakinra”
(NCT04926467) and “idelalisib” (NCT03878524) target this pathway
regarding its druggability; moreover, i.e “ASN007” (NCT03415126)
and “avutometinib” (NCT 03875820) as inhibitors of respectively
MAPK1-3 and MEKs, are in phase 2 of both clinal trials.
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“Cancer cachexia pathway” shows a systemic excess catabolism
syndrome that decreases the quality of life, ability to tolerate
treatment, and eventual survival; the wasting phenotype mostly
occurs in skeletal muscle and adipose tissue, but other organs,
such as brain, liver, pancreas, and heart, are also affected [65]. The
activation of such pathways could be of interest for further
investigation to deepen the understanding of PC comorbidities
and responses to therapies, since loss of body weight, metabolic
alterations such as glucose, protein and lipid metabolism, systemic
inflammation, insulin resistance, and oxidative stress are patho-
physiological changes involved in the progress of cancer cachexia
[66]. It could also be interesting to investigate liver and lung
function, as hepatic and pulmonary fibrosis pathways appear to be
predicted upregulated.

The high mobility group-B1 (HMGB1) has a role in inflammatory
responses and tumor metastasis: it's regulated by the activation of
inflammatory cells through binding of tumor necrosis factor (TNF),
lipopolysaccharide (LPS), further identified as upregulated
upstream regulators, and HMGB1 itself and it regulates the
activation of MAPK pathways with again p38-MAPK. It also
interacts with the extracellular matrix and membrane receptors,
affecting cell motility and metastasis [67, 68]. So, targeting the
HMGBT1 or its receptors, could represent an important potential
application in cancer therapeutics: i.e., “ASN007” (NCT03415126) in
phase 2-clinical trial targets MAPL1-3 within the regulation of this
pathway.

Regarding “inflammation and immune response”, triggering
receptor expressed on myeloid cells 1 (TREM1) signaling results in
the production of proinflammatory cytokines such as TNF and IL-6
[69]; moreover, inflammation and immune response are stimu-
lated by IL-17, IL-33 and IL-6 signaling in a cytokine storm
signaling pathway as well as cancer development [70]; in
particular, IL-33 signaling results again in activation of MAPK
signaling and p38-MAPK [71] and the transcription of the IL-6
gene is also stimulated by tumor necrosis factor (TNF), further
identified as the upregulated upstream regulator. Additionally,
inflammation at the neuronal level also appears to be activated
with an excessive cell and tissue damage which results in the
destruction of normal tissue and chronic inflammation that
ultimately results in necrosis of glial cells and neurons [72, 73];
in this case as well, it could be important to further investigate the
concomitant symptoms of PC since chronic neuroinflammation is
closely related to chronic neurodegenerative diseases such as
Alzheimer's disease, Parkinson'’s disease and has also been a focus
of research into the pathology underlying psychiatric disorders
like depression [74]. Globally, within the tumor microenvironment
(TME) pathway, which comprises cancer cell, cytokine environ-
ment, extracellular matrix, immune cell subsets, wound healing
signaling and other components, the pro-tumorigenic immune
response plays a pivotal role in driving immune invasion; the
tumor not only manages to escape from the host immune system,
but it effectively benefits from infiltrating cells by modifying their
functions to create microenvironment favorable for tumor
progression [75]. For this reason, targeting the inflammatory
pathways has become one of the primary objectives in
pharmaceutical research on PC.

Regarding “disease and functions” analysis, the main categories
of interest together with their significant z-scores and P values, are
reported in Fig. 3: “cancer”, “cell signaling and movement”,
“inflammatory response”, “free radical scavenging”, and “lipidic
metabolism”. The complete list of diseases and biofunctions
obtained from the functional analysis on IPA is provided in the
Supplementary Table S2.

As expected, “cancer” is the first category we focused on, as
proof of concept (Panel A). Among the functions predicted to be
significantly upregulated (z-score >2), we found neoplasia of
tumor cell lines, metastasis of cells, cancer of tumor cell lines,
invasion of tumor, progressive solid tumor, and cell viability of

Oncogenesis (2025)14:3

F. Di Marco et al.

cancer cells. “Pancreatic cancer” and “pancreatic tumor” functions
have a z-score value of about 1, so they cannot be considered as
predicted functions to be upregulated with a significant z-score,
but the log10 (P value), on the other hand, is statistically
significant. For the “cell signaling and movement” category (Panel
B), since biomarkers in the circulating fluid are obviously also
implicated in cell signaling, we could highlight how tumor cell
movement and signaling is predicted to be activated by
biomarkers such as migration and invasion of tumor cell lines,
and cell-cell contact. In this context, we also find a remarkable
activation of the immune and inflammatory response in the
stimulation of phagocytes, monocytes, leukocytes, and lympho-
cytes. We can also observe a significant activation (z-score >2) of
inflammatory response, innate immune response and acute phase
reaction pathways (Panel C) as well as activation of reactive
oxygen species’ quantity, metabolism, and synthesis (Panel D),
confirming an important activation of inflammatory and immune
responses, already identified in the “canonical pathways” analysis.
As far as lipid metabolism is concerned, the bubble plot (Panel E)
shows a significant activation (z-score >2) of fatty acid metabolism
and a fair activation (z-score = 1.9) of eicosanoid synthesis; PC
cells need lipids during some conditions such as rapid prolifera-
tion, metabolic stress, and many cellular activities; cells acquiring
of fatty acids (FAs) and cholesterol depends on lipid uptake from
the exogenous environment [76]. It's clear that fatty acid
translocase (CD36) is involved in metastasis initiation and
proliferation [77]: large tumor size and reduced survival rate are
associated with the low expression of CD36 [78]. Regarding
cholesterol, his uptake dysregulation contributes to PC carcino-
genesis but also cholesterol efflux is critical for cholesterol
homeostasis since it contributes to diverse types of tumors.
Moreover, despite lipogenesis takes place in hepatocytes and
adipocytes, cancer cells can acquire lipids through de novo
synthesis because of their high metabolic demand [76].

Insights biomarker pathways explore inflammation and tissue
dynamics

When looking at well-characterized metabolic and cell signaling
pathways, also known as “canonical pathways”, our analysis
showed two significant canonical pathways (z-score >1 and a
—log10 (P value) >1.3). These pathways are “macrophage
alternative activation”, which plays a crucial role in innate and
adaptive immunity and the inflammatory response, and the “S100
family signaling”, which is linked to cancer signaling pathways. In
particular, the immune function is the primary role of S100
proteins, which also are important regulators of macrophage
inflammation [79]; cell stress and injury and inflammation
promote proinflammatory signaling pathways in turn related to
cell differentiation, inflammation, migration, cell survival, prolif-
eration, and tissue repair [80]. The complete list of canonical
pathways is provided in Supplementary Table S3. Second, we
again focused on disease and function identification to point out
some downstream effects expected to increase or decrease,
according to IPA prediction. The complete list of diseases and
biofunctions obtained from the functional analysis on IPA is
provided in Supplementary Table S4. So, Fig. 4 shows the “disease
and functions” for each category of interest: in this case, it's not
possible to find the “cancer” category, as a proof of concept in
fluid biomarkers, since some pathways are described in a
significant way but without any prediction regarding pathways
regulation (not significant z-score). However, we find some
downstream effects linked to cell viability and migration of tumor
cell lines as significantly upregulated (z-score >2), such as cell
viability, aggregation of cells, migration of cells, cell movement of
tumor cell lines, migration of tumor cell lines, invasion of
carcinoma cell lines, cell movement of carcinoma cell lines,
migration of carcinoma cell lines and invasion of tumor cell lines
(Fig. 4A). The bubble plot in Fig. 4B shows a significant activation

SPRINGER NATURE



F. Di Marco et al.

A) Cancer

Metastass of cs
Growthoftumor
Lung cancer
Motastass-

Exanepat metastasis
ol viabity of cancercat |

Growth ofhematologca ystem tumar |
pancrea cancer{

el deatnoftumor s |

Condeath oftumor-

Matgant neapiasm o eropertoneun
cer

o
Metaroma °

Prosteration o eukemacos |
Growt ot meianoma ©

C) Inflammatory Response

Inflammatory response

Innate immune response

Acute phase reaction

Proinflammatory response-

Immune response of cells:

Fever

TH1 immune response

Cell- mediated response

Th17 immune response-

Inflammation of respiratory system component{
Inflammation of central nervous system
Cytotoxic reaction of cells:

Inflammation of absolute anatomical region
Inflammation of organ

Inflammation of body cavity:

Inflammation of limb

E) Lipid Metabolism

[

1 2
z- score

Fatty acid metabolism{
Synthesis of eicosanoid {
Synthesis of fatty acid
Synthesis of prostaglandin {
Transport of lipid
Secretion of triacylglycerol{
Accumulation of lipid
Transport of steroid
Concentration of lipid
Quantity of polyunsaturated fatty acids
Concentration of fatty acid
Disorder of lipid metabolism{
Abnormal metabolism-{
Efflux of cholesterol{
Transport of phospholipid {
Concentration of eicosanoid {
Concentration of prostaglandin {
Synthesis of lipid
Secretion of lipid
Efflux of phospholipid {
Release of lipid
Quantity of steroid
Transmission of lipid
Metabolism of sterol
Concentration of triacylglycerol {
Steroid metabolism {
Metabolism of terpenoid
Uptake of lipid
Concentration of cholesterol {
Glucose metabolism disorder
Concentration of cholesterol ester
Synthesis of steroid { @

B) Cell Signaling Movement

T §

5
s o

Wigrsion of neuto
Cotmovsmertalymoned

E3
2-score

D) Free Radical Scavenging

Quantity of reactive oxygen species

Metabolism of reactive oxygen species

Synthesis of reactive oxygen species:

Production of reactive oxygen species

Production of superoxide-

10 15

05 X
2z- score

Legend

- logqo(pvalue)
-0.8

-1.0
-1.2
S -14

count

® 10
® 20
® 30
® 40
® 50
@® 60

1

0

Z- score
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of each function with a significance of —log10 (P value) indicated by bubbles color (color scale of red and green). The size of bubbles depends
on the number of biomarkers that overlap the described pathway. This bubble blot has been created using the values of “P value’ “z-score]
and “# of molecules” resulting from the functional analysis carried out by IPA software.
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resulting from the functional analysis carried out by IPA software.

Table 2.

Upstream regulators

Molecular type

Upstream regulators and relative predicted modulation based on fluid biomarkers functional analysis by IPA.

Predicted activation state Activation z-score

LPS Chemical drug Activated 4.168
TNF Cytokine Activated 3.998
P38-MAPK Group Activated 2.853
AGT Growth factor Activated 2.83
Tetradecanoylphorbol acetate Chemical drug Activated 2.571
miR-323-5p (and other miRNAs w/seed GGUGGUC) Mature microRNA Inhibited —2.345
miR-34a-5p (and other miRNAs w/seed GGCAGUG) Mature microRNA Inhibited —2.646

of the inflammatory response (z-score >2) and a significant
inhibition of organismal death (z-score < —2). The predicted
activation of the inflammatory response and the inhibition of cell
death would, however, seem to confirm the tumor trend, although
in a less evident way than in the fluid biomarkers’ analysis. Since
the IPA research is based on data published in the literature, there
is probably less information on tissue studies; this could explain
the lower number of correlations found in tissue biomarkers
compared to fluids. In this context, it would, therefore, be
interesting to further research on tissue biomarkers in PC.

Exploring upstream regulators to understand transcriptional
control and biomarker expression patterns

In the functional enrichment analysis conducted using IPA software,
we have identified a cascade of upstream transcriptional regulators
that can account for the changes in protein biomarker expression
observed in our dataset. This information can provide insights into
the biological activities taking place in the analyzed fluids and
tissues. IPA makes it easy to take this result even further by
examining what biological processes, pathways, and diseases the
transcriptional regulators and their targets may control, and how
these upstream molecules may regulate one another. The complete
lists of upstream regulators obtained from the functional analysis on
IPA are both provided in the Supplementary Tables S5 and S6. The
description of “upstream regulators” is accompanied by their
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predicted regulation, generated by bioinformatics software and
quantified through the “z-score” value. Since the upstream analysis
aim is to predict some biological regulators above our biomarkers, it
may not be affected by the original fluid or tissue; so, we then
focused on upstream regulators that are shared between fluid and
tissue biomarkers functional analysis with a significant z-score value
(z-score > 2 or < —2): we identified seven upstreams that meet these
conditions, 470 unique fluid upstreams and 21 unique tissue
upstreams (the complete lists are in the Supplementary Tables
S7-9). In the following tables (Tables 2 and 3), we list and tabulate
the shared seven upstream regulators with their respective
information about molecular type, predicted activation state, and
activation z-score in both functional analyses; they present the same
trend in both functional analyses performed on fluid and tissue
protein biomarkers.

LPS is predicted to be upregulated and, in turn, increases the
stimulation and release of TNF [81, 82] and the activation of P38-
MAPK [83] and angiotensinogen (AGT) [84]. It shows a role in the
expression of pancreatic cancer cell lines [85], activation and
phosphorylation of tumor cell lines [86], and proliferation of
pancreatic cancer cell lines [87]. The second upregulated upstream
is the TNF, which is involved in the production and release of
reactive oxygen species as a confirmation of the disease and
biofunction predicted to be upregulated as downstream [88, 89].
It's also regulated by P38-MAPK [90], which is the third
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Table 3. Upstream regulators and relative predicted modulation based on tissue biomarkers functional analysis by IPA.

Upstream regulators Molecular type Predicted activation state Activation z-score
LPS Chemical drug Activated 2122

TNF Cytokine Activated 2512

P38-MAPK Group Activated 22

AGT Growth factor Activated 2.085
Tetradecanoylphorbol acetate Chemical drug Activated 2.585

miR-323-5p (and other miRNAs w/seed GGUGGUC) Mature microRNA Inhibited —2.236
miR-34a-5p (and other miRNAs w/seed GGCAGUG) Mature microRNA Inhibited —2.449

upregulated upstream and also has a role in the production of
reactive oxygen species [91]. AGT, as again upregulated upstream,
regulates TNF [92] and presents a positive expression in pancreatic
cancer cell lines [93]. Moreover, its product angiotensin Il protein,
increases the quantity of reactive oxygen species, continuing to
confirm our disease and function effects analysis [94]. Tetra-
decanoylphorbol acetate is a drug used in cancer treatment [95]
and regulates TNF [96] and P38- MAPK [97]. Its predicted
upregulation may be a proof of concept since we are studying
protein biomarkers involved in cancer research. The last two
upstream regulators are predicted to be downregulated in our
original fluids and tissues: the downregulation of human miR-34a-
5p is associated with pancreatic cancer in humans [98]. Overall, as
another proof of concept, it is related to pancreatic cancer cell
lines since in cell culture, human miR-34a-5p mature microRNA
increases the arrest in cell cycle progression of MIA-PaCa-2 cells in
cell culture [99] and decreases the viability of MIA-PaCa-2 cells
[100]. miR-423-5p is regulated by LPS, which increases its
expression in cultured THP-1 macrophage cells [101]; according
to Volinia et al. [102], it seems to be involved in breast cancer
disease so it could be interesting to study its role and its
regulation also in PC.

DISCUSSION

Pancreatic cancer is considered a highly fatal malignancy with an
estimated overall 5-year survival rate of patients of 7.2% at the time
of diagnosis. The efforts of the clinical community in implementing
diagnostic approaches and perioperative management collide with
the high resistance of PC to conventional chemotherapy treatments,
and this represents one of the reasons for this poor prognosis. To
date, the “gold standard” for the diagnosis of PC is the fine-needle
biopsy performed with image techniques or under direct visualiza-
tion at surgery. However, as widely discussed in this study, in recent
years, much progress has been made in the field of biomarker
discovery. In fact, current proteomic techniques aim to identify and
quantify a high number of proteins from different biological samples,
trying to provide the most complete view of the metabolic pathways
or pathological processes implicated in the onset and development
of PC, with the final purpose of investigating potential new
pharmacological targets. In this study, we have collected protein
biomarkers from the last ten years studies, distinguishing between
tissue/cellular markers and circulating markers and performing a
meta-analysis through the IPA bioinformatic tool with the aim to
provide new and detailed information from published data. Our
meta-analysis revealed that data literature, deriving from various
biological fluids as well as cells and tissues, are consistent with each
other and primarily focused on the description of functions related
to cancer and cell migration, as expected. On the other hand, some
new evidence has emerged regarding inflammation, activation of
free radical production, and lipids metabolism, conditions that could
be further explored in the assessment of the onset and progression
of PC. It is possible to notice, also as a proof of concept, that we find
in fluid biomarkers functional analysis all pathways related to cancer
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and inflammation signaling as significantly activated and those
related to anti-proliferative and anti-inflammatory functions as
significantly inhibited pathways. Moreover, according to “canonical
pathway” analysis, it is interesting to notice that recent studies have
investigated the correlation between PC onset and progression and
the regulation of lipid metabolism, found to be modulated also in
the “Diseases and functions” analysis; furthermore, our results
obtained from fluid functional analysis fully correspond to the
literature data on lipid metabolism, better described in the Results
section. In this scenario, research on potential therapeutic drugs aims
to identify future PC treatment targeting FA synthesis, cholesterol
synthesis, lipid catabolism, and transcriptional regulators of lipid
metabolism. Globally, this targeted therapy represents a novel and
potentially effective strategy for PC treatment, but since it is still
necessary to investigate some unclear aspects, further understanding
and research are required.

Interestingly, the study of upstream regulators has highlighted
some factors already known in the context of PC, such as LPS, AGT,
tetradecanoylphorbol acetate, miR-34a-5p, and miR-423-5p. At the
same time, TNF and p38-MAPK, which are involved in oxidative
stress scavenging, have not been directly linked to PC. All these
findings could represent new starting points for both the
characterization of cancer progression and the study of potential
diagnostic biomarkers, allowing a more complete description of
clinically relevant information. Moreover, as fully described in the
results, all the mentioned pathways, mostly inflammation, exhibit
significant druggability, which provides a future outlook on the
development of additional therapeutic approaches in pancreatic
cancer (PQ). It's important to note that integrating a large number of
biological components with their interactions and environmental
relationships, provides the opportunity to reach an in-depth
description of the pathological condition in PC and to define
correlations between concomitant symptoms and tumor genesis
and progression. This meta-analysis offers valuable insights into
specific pathways implicated in prognosis, and druggability. Despite
our challenging approach, this meta-analysis provides a more
holistic perspective on existing data. One of the primary benefits of
our work is the ability to synthesize and contextualize a wide array
of literature data. Individual studies contribute meaningful informa-
tion, yet when analyzed collectively, they unveil new evidence
regarding the pathways involved in various biological processes,
such as inflammation. By integrating findings from diverse studies,
we hope to stimulate further investigation into the roles of these
pathways, thereby contributing to the advancement of knowledge
in the field of proteomics and its applications in pre-clinical and
clinical research. Among the significant pathways identified,
inflammation, activation of free radical production and lipids
metabolism, are the most important to pursue in scientific research.
Understanding their relationship with PC and determining whether
their alterations are a cause or consequence of its onset, could
further reveal their potential role in early detection or treatment
monitoring. In conclusion, our work represents a strategy to
combine results from different studies on various PC biological
samples in a more comprehensive way.
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Fig. 5 PRISMA chart of meta-analysis workflow consists of biomarkers identification and selection, evaluation, and subsequent
functional meta-analysis. We performed a selection process in order to considerer only eligible articles, according to our inclusion and
exclusion criteria, for the further analysis of circulating and tissue biomarkers.

MATERIALS AND METHODS

Biomarkers identification and evaluation workflow

To deepen proteomics features and studies in PC, we performed a
systematic review of the literature with meta-analysis. In Fig. 5, we
summarized the inclusion and exclusion criteria used for the
literature search. We selected article type such as meta-analysis,
randomized controlled trial, review, and systematic review on the
PubMed website from the past decade, searching the keywords
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“pancreatic cancer”, “PDAC", “drug” and “biomarkers” (combined
with each other using the Boolean operator -AND -OR), obtaining
5156 eligible papers. We then narrowed our search even further
by inserting -AND “proteomics”, “immunohistochemistry” as new
keywords, resulting in 102 articles. Subsequently, we focused on
those that specifically addressed tissue and circulating biomarkers
related to diagnosis, prognosis, and overall survival. Following

these research parameters, we obtained a total number of 94 PC
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protein biomarkers (n. 11 downregulated biomarkers and n. 83
upregulated) to perform the meta-analysis. Finally, we have
classified our biomarkers by “PANTHER—(Protein ANalysis
THrough Evolutionary Relationships)—protein classification”
basing on their “Family and Protein Class” (supergrouping of
protein families). The core of PANTHER is a comprehensive,
annotated “library” of gene family phylogenetic trees. All nodes in
the tree have persistent identifiers that are maintained between
versions of PANTHER, providing a stable substrate for annotations
of protein properties like subfamily and function. Each phyloge-
netic tree is used to annotate each protein member of the family.

Functional meta-analysis by Ingenuity Pathway Analysis

As can be seen from Table 1, our selected biomarkers (n. 94) have
different origins, so we decided to perform the subsequent
functional enrichment analysis through “Ingenuity Pathway Analysis”
software (IPA, Qiagen, Hilden, Germany) and categorize the
biomarkers based on their origin, since they have distinct functional
implications: fluid biomarkers (n. 70) and tissue biomarkers (n. 24).
Biomarkers found in plasma, serum, urine, peripheral blood, oral fluid
(OF), pancreatic juice (PJ), and duodenal juice (DJ) were categorized
as “fluid biomarkers.” Biomarkers identified in pancreatic cancer (PC)
samples, pancreatic ductal adenocarcinoma (PDAC) tissue samples,
tissue specimens from cancer, and tumor resection were categorized
as “tissue biomarkers”. The list of all biomarkers and related fluids/
tissues of origin is provided in Table 1, respectively with their trend,
biological matrix, tumor type, number of articles, PANTHER protein
classification, and reference. Subsequently, we used IPA “Core
Analysis” to map statistically protein biomarkers to their functional
annotation such as “canonical pathways” analysis, “upstream
regulators” analysis and “disease and function effects” networks. As
reported in Table 1, we have evaluated the single regulation of each
molecular biomarker in the PC fluid or tissue compared with healthy
controls. Biomarkers from fluid and tissue studies were uploaded on
IPA software as two different matrices composed by protein
biomarkers and their up or downregulation trend, as reported in
our previous studies [13] (Fig. 5). It is important to notice the inherent
variability among different proteomic methodologies: the differences
in extraction techniques, instruments, and data processing lead to
limitations in the comparability of results. So that, the measurements
of protein concentrations in proteomics are often expressed as
abundance ratios rather than absolute concentrations. In our
analysis, biomarkers were classified based only on their modulation
status, either upregulated or downregulated, acknowledging the
challenge of standardizing these measurements across studies. As
described in Claudia Rossi et al. in 2022, we used the same
methodology to assess the protein expression of each biomarker: the
quantitative data (fold change) from each study were standardized
by converting downregulation values to 0.1 and upregulation values
to 10, reflecting the observed trends. IPA tool returns the results by
assigning to each pathway “upstream” and “downstream,” a value of
—log10 (P value) and a z-score value. The —log10 (P value) measures
the statistical overlap between the protein dataset and the function
categories; the significance is attributed to —log10 (P value) greater
than 1.3. Instead, the predicted regulation of each “canonical
pathways”, “upstream regulators” and “downstream” network effects
is inferred by the z-score generated by IPA system (z-scores =2.0
means that a molecule or pathway is activated, whereas z-
scores < —2.0 means the inhibition of target molecules or pathways).
First, we focused on well-characterized metabolic and cell signaling
pathways defined as “canonical pathways”. We next studied
“diseases and functions,” which allows us to describe and predict
the effect of molecular changes in our dataset on biological
processes and disease or toxicological functions, trying to predict
whether these phenomena are activated or inhibited. Regarding the
analysis of “upstream regulators”, IPA can identify the cascade of
upstream transcriptional regulators that would cause the observed
modulations in biomarker expression.
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