Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice

Abstract

Background

Preterm infants frequently require oxygen supplementation at birth. However, preterm lung is especially sensible to structural and functional damage caused by oxygen free radicals.

Methods

The adaptive mechanisms implied in the fetal-neonatal transition from a lower to a higher oxygen environment were evaluated in a murine model using a custom-designed oxy-chamber. Pregnant mice were randomly assigned to deliver in 14% (hypoxic preconditioning group) or 21% (normoxic group) oxygen environment. Eight hours after birth FiO2 was increased to 100% for 60 min and then switched to 21% in both groups. A control group remained in 21% oxygen throughout the study.

Results

Mice in the normoxic group exhibited thinning of the alveolar septa, increased cell death, increased vascular damage, and decreased synthesis of pulmonary surfactant. However, lung histology, lamellar bodies microstructure, and surfactant integrity were preserved in the hypoxic preconditioning group after the hyperoxic insult.

Conclusion

Postnatal hyperoxia has detrimental effects on lung structure and function when preceded by normoxia compared to controls. However, postnatal hypoxic preconditioning mitigates lung damage caused by a hyperoxic insult.

Impact

  • Hypoxic preconditioning, implemented shortly after birth mitigates lung damage caused by postnatal supplemental oxygenation.

  • The study introduces an experimental mice model to investigate the effects of hypoxic preconditioning and its effects on lung development. This model enables researchers to delve into the intricate processes involved in postnatal lung maturation.

  • Our findings suggest that hypoxic preconditioning may reduce lung parenchymal damage and increase pulmonary surfactant synthesis in reoxygenation strategies during postnatal care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental Design: model of postnatal hypoxic preconditioning.
Fig. 2: Assessment of oxygen saturation, respiratory rate and heart rate in mice offspring.
Fig. 3: Study of the effect of hypoxic preconditioning on the lung parenchyma and development of the pulmonary vasculature of the lungs of mice in P1.
Fig. 4: Hypoxic preconditioning increases pulmonary surfactant levels in P1 mice offspring.
Fig. 5: Study of the effect of hypoxic preconditioning on the lung parenchyma and development of the pulmonary vasculature of the lungs of mice in P7.
Fig. 6: HP increases pulmonary surfactant levels at P7.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Wyckoff, M. H. et al. Neonatal life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 142, S185–S221 (2020).

    Article  PubMed  Google Scholar 

  2. Kapadia, V. et al. Outcomes of delivery room resuscitation of bradycardic preterm infants: a retrospective cohort study of randomised trials of high vs low initial oxygen concentration and an individual patient data analysis. Resuscitation 167, 209–217 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saugstad, O. D., Lakshminrusimha, S. & Vento, M. Optimizing oxygenation of the extremely premature infant during the first few minutes of life: start low or high? J. Pediatr. 227, 295–299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oei, J. L. et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 103, 446–454 (2018).

    Article  Google Scholar 

  5. Kapadia, V. S. et al. Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics 132, 1488–1496 (2013).

    Article  Google Scholar 

  6. Vento, M. et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 124, 439–449 (2009).

    Article  Google Scholar 

  7. Sever, N., Miličić, G., Bodnar, N. O., Wu, X. & Rapoport, T. A. Mechanism of lamellar body formation by lung surfactant protein B. Mol. Cell 81, 49–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Hentschel, R., Bohlin, K., van Kaam, A., Fuchs, H. & Danhaive, O. Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr. Res. 88, 176–183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Whitsett, J. A. & Weaver, T. E. Hydrophobic surfactant proteins in lung function and disease. N. Engl. J. Med. 347, 2141–2148 (2002).

    Article  PubMed  Google Scholar 

  10. Sweet, D. G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 120, 3–23 (2023).

  11. Cole, F. S., Hamvas, A. & Nogee, L. M. Genetic disorders of neonatal respiratory function. Pediatr. Res. 50, 157–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Shizukuda, Y., Mallet, R. T., Lee, S. C. & Downey, H. F. Hypoxic preconditioning of ischaemic canine myocardium. Cardiovasc. Res. 26, 534–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Sprick, J. D., Mallet, R. T., Przyklenk, K. & Rickards, C. A. Ischaemic and hypoxic conditioning: potential for protection of vital organs. Exp. Physiol. 104, 278–294 (2019).

    Article  PubMed  Google Scholar 

  14. Zhang, S. X. L., Miller, J. J., Gozal, D. & Wang, Y. Whole-body hypoxic preconditioning protects mice against acute hypoxia by improving lung function. J. Appl. Physiol. 96, 392–397 (2004).

    Article  PubMed  Google Scholar 

  15. Cruz, F. F. & Rocco, P. R. M. Hypoxic preconditioning enhances mesenchymal stromal cell lung repair capacity. Stem Cell Res. Ther. 6, 130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaminski, A. et al. Endothelial nitric oxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respir. Physiol. Neurobiol. 155, 280–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, Y. et al. Simultaneous determination of adenine nucleotides, creatine phosphate and creatine in rat liver by high performance liquid chromatography–electrospray ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal. 66, 258–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Hsia, C. C. W., Hyde, D. M., Ochs, M. & Weibel, E. R. An official research policy statement of the American Thoracic Society/European respiratory society: standards for quantitative assessment of lung structure. Am. J. Respir. Crit. Care Med 181, 394–418 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dunnill, M. S. Quantitative methods in the study of pulmonary pathology. Thorax 17, 320–328 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dawson, J. A. et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics 125, 1340–1347 (2010).

    Article  Google Scholar 

  21. Yee, M. et al. Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am. J. Physiol. Lung Cell Mol. Physiol. 291, 1101–1111 (2006).

    Article  Google Scholar 

  22. Vassiliou, A. G., Kotanidou, A., Dimopoulou, I. & Orfanos, S. E. Endothelial damage in acute respiratory distress syndrome. Int. J. Mol. Sci. 21, 8793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, G., Ge, D., Zhu, B., Shi, H. & Ma, Q. Upregulation of matrix metalloproteinase 9 (MMP9)/tissue inhibitor of metalloproteinase 1 (TIMP1) and MMP2/TIMP2 ratios may be involved in lipopolysaccharide-induced acute lung injury. J. Int. Med Res. 48, 300060520919592 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Matsuzaki, Y. et al. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells. Am. J. Respir. Cell Mol. Biol. 38, 551–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Croker, B. A. et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat. Immunol. 4, 540–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ueno, T. et al. Processing of pulmonary surfactant protein B by napsin and cathepsin H. J. Biol. Chem. 279, 16178–16184 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Escobedo, M. B. et al. 2019 American Heart Association focused update on neonatal resuscitation: an update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 140, 922–930 (2019).

    Article  Google Scholar 

  28. Lui, K. et al. Lower versus higher oxygen concentrations titrated to target oxygen saturations during resuscitation of preterm infants at birth. Cochrane Database Syst. Rev. 5, CD010239 (2018).

    PubMed  Google Scholar 

  29. Welsford, M. et al. Initial oxygen use for preterm newborn resuscitation: a systematic review with meta-analysis. Pediatrics 143, 20181828 (2019).

    Article  Google Scholar 

  30. Dekker, J. et al. The effect of initial high vs. low FiO2 on breathing effort in preterm infants at birth: a randomized controlled trial. Front Pediatr. 7, 504 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kapadia, V. S. et al. Impact of the neonatal resuscitation program-recommended low oxygen strategy on outcomes of infants born preterm. J. Pediatr. 191, 35–41 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Verges, S., Chacaroun, S., Godin-Ribuot, D. & Baillieul, S. Hypoxic conditioning as a new therapeutic modality. Front Pediatr. 3, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hooper, S. B., Te Pas, A. B., Polglase, G. R. & Wyckoff, M. Animal models in neonatal resuscitation research: what can they teach us? Semin. Fetal Neonatal Med. 23, 300–5 (2018).

    Article  PubMed  Google Scholar 

  34. Torres-Cuevas, I., Corral-Debrinski, M. & Gressens, P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic. Biol. Med 42, 3–15 (2019).

    Article  Google Scholar 

  35. Millar, L. J., Shi, L., Hoerder-Suabedissen, A. & Molnár, Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front Cell Neurosci. 11, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hussain, M. et al. Notch signaling: linking embryonic lung development and asthmatic airway remodeling. Mol. Pharm. 92, 676–693 (2017).

    Article  CAS  Google Scholar 

  37. Pallardo, F. V. et al. Physiological changes in glutathione metabolism in foetal and newborn rat liver. Biochem J. 274, 891–3 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gordon, C. J. The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol. Behav. 179, 55–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhandari, V. Hyperoxia-derived lung damage in preterm infants. Semin Fetal Neonatal Med 15, 223–229 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Buczynski, B. W., Yee, M., Paige Lawrence, B. & O’Reilly, M. A. Lung development and the host response to influenza A virus are altered by different doses of neonatal oxygen in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 302, L1078–L1087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berger, J. & Bhandari, V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am. J. Physiol. Lung Cell Mol. Physiol. 307, L936–L947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Solberg, R., Andresen, J. H., Escrig, R., Vento, M. & Saugstad, O. D. Resuscitation of hypoxic newborn piglets with oxygen induces a dose-dependent increase in markers of oxidation. Pediatr. Res. 62, 559–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Dawson, J. A. et al. Oxygen saturation and heart rate during delivery room resuscitation of infants <30 weeks’ gestation with air or 100% oxygen. Arch. Dis. Child Fetal Neonatal Ed. 94, F87–F91 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, R., Xu, F. & Liu, J. Prenatal hypoxia preconditioning improves hypoxic ventilatory response and reduces mortality in neonatal rats. J. Perinat. Med. 36, 161–167 (2008).

    Article  PubMed  Google Scholar 

  45. Laudenbach, V. et al. Neonatal hypoxic preconditioning involves vascular endothelial growth factor. Neurobiol. Dis. 26, 243–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, S. X. L. et al. Type I epithelial cells are the main target of whole-body hypoxic preconditioning in the lung. Am. J. Respir. Cell Mol. Biol. 40, 332–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, X., Lei, X., Wang, J. & Dong, W. Protective effects of resveratrol on hyperoxia-induced lung injury in neonatal rats by alleviating apoptosis and ROS production. J. Matern Fetal Neonatal Med. 33, 4150–4158 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Husari, A. W. et al. Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia. Respir. Res. 7, 100 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Giusto, K., Wanczyk, H., Jensen, T. & Finck, C. Hyperoxia-induced bronchopulmonary dysplasia: better models for better therapies. Dis. Model Mech. 14, dmm047753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dieperink, H. I., Blackwell, T. S. & Prince, L. S. Hyperoxia and apoptosis in developing mouse lung mesenchyme. Pediatr. Res. 59, 185–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Ali, I. et al. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide. Pulm. Circ. 3, 578–588 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hao, C. et al. Hypoxic preconditioning improves the survival and pro-angiogenic capacity of transplanted human umbilical cord mesenchymal stem cells via HIF-1α signaling in a rat model of bronchopulmonary dysplasia. Biochem Biophys. Res. Commun. 605, 111–118 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Piedboeuf, B. et al. In vivo expression of intercellular adhesion molecule 1 in type II pneumocytes during hyperoxia. Am. J. Respir. Cell Mol. Biol. 15, 71–77 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Orwoll, B. E. & Sapru, A. Biomarkers in pediatric ARDS: future directions. Front Pediatr. 4, 55 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Akeson, A. L., Cameron, J. E., Le Cras, T. D., Whitsett, J. A. & Greenberg, J. M. Vascular endothelial growth factor-A induces prenatal neovascularization and alters bronchial development in mice. Pediatr. Res. 57, 82–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Westberg, J. A. et al. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling. Stroke 38, 1025–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Nogueira-Silva, C., Santos, M., Baptista, M. J., Moura, R. S. & Correia-Pinto, J. IL-6 is constitutively expressed during lung morphogenesis and enhances fetal lung explant branching. Pediatr. Res. 60, 530–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Shimoya, K. et al. Chorioamnionitis decreased incidence of respiratory distress syndrome by elevating fetal interleukin-6 serum concentration. Hum. Reprod. 15, 2234–2240 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Li, H., Wang, G., Lin, S., Wang, C. & Zha, J. Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice. Exp. Ther. Med. 17, 3101–3107 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sepúlveda, P., Encabo, A., Carbonell-Uberos, F. & Miñana, M. D. BCL-2 expression is mainly regulated by JAK/STAT3 pathway in human CD34+ hematopoietic cells. Cell Death Differ. 14, 378–380 (2007).

    Article  PubMed  Google Scholar 

  61. Liu, Y., Li, P.-K., Li, C. & Lin, J. Inhibition of STAT3 signaling blocks the anti-apoptotic activity of IL-6 in human liver cancer cells. J. Biol. Chem. 285, 27429–27439 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ikegami, M., Falcone, A. & Whitsett, J. A. STAT-3 regulates surfactant phospholipid homeostasis in normal lung and during endotoxin-mediated lung injury. J. Appl Physiol. 104, 1753–1760 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Ramanathan, R. Surfactant therapy in preterm infants with respiratory distress syndrome and in near-term or term newborns with acute RDS. J. Perinatol. 26, S51–S56 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Professor Francisco Blanes, School of Informatic, Dept. of Computer Engineering of the Universitat Politècnica de València (UPV) for support and helpful design oxy-chamber to develop of animal model; P. García-Tárraga for the experimental support at the Laboratory of Comparative Neurobiology of the University of Valencia (UV).

Funding

Consellería of Innovation, Universities, Science and Society digital of the Community of Valencia (Spain) grant GV/2018/021. (IT-C). Consellería of Innovation, Universities, Science and Society digital of the Community of Valencia (Spain) grant GV/2021/188. (IT-C). RETICS funded by the PN 2018-2021 (Spain), ISCIII- Sub-Directorate General for Research Assessment and Promotion and the European Regional Development Fund(FEDER), reference RD16/0022/0001 and FIS PI20/0964 grant from the Instituto de Salud Carlos III (Ministry of Science, Spain) (IM, MV).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: I.T.-C. and M.V. Performed the experiments: I.T.-C., I.M., S.P., S.R., M.A., J.M.G.-V. Animal procedure: I.T.-C., I.M., and S.P.; Writing—original draft: I.T.-C., S.P., and M.V.; Writing—review & editing: I.T.-C., S.P., and M.V.

Corresponding authors

Correspondence to Máximo Vento or Isabel Torres-Cuevas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millan, I., Pérez, S., Rius-Pérez, S. et al. Postnatal hypoxic preconditioning attenuates lung damage from hyperoxia in newborn mice. Pediatr Res 97, 1684–1695 (2025). https://doi.org/10.1038/s41390-024-03457-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03457-0

Search

Quick links