Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methodological considerations on diffusion MRI tractography in infants aged 0–2 years: a scoping review

Abstract

Diffusion MRI (dMRI) enables studying the complex architectural organization of the brain’s white matter (WM) through virtual reconstruction of WM fiber tracts (tractography). Despite the anticipated clinical importance of applying tractography to study structural connectivity and tract development during the critical period of rapid infant brain maturation, detailed descriptions on how to approach tractography in young infants are limited. Over the past two decades, tractography from infant dMRI has mainly been applied in research settings and focused on diffusion tensor imaging (DTI). Only few studies used techniques superior to DTI in terms of disentangling information on the brain’s organizational complexity, including crossing fibers. While more advanced techniques may enhance our understanding of the intricate processes of normal and abnormal brain development and extensive knowledge has been gained from application on adult scans, their applicability in infants has remained underexplored. This may partially be due to the higher technical requirements versus the need to limit scan time in young infants. We review various previously described methodological practices for tractography in the infant brain (0–2 years-of-age) and provide recommendations to optimize advanced tractography approaches to enable more accurate reconstructions of the brain WM’s complexity.

Impact

  • Diffusion tensor imaging is the technique most frequently used for fiber tracking in the developing infant brain but is limited in capability to disentangle the complex white matter organization.

  • Advanced tractography techniques allow for reconstruction of crossing fiber bundles to better reflect the brain’s complex organization. Yet, they pose practical and technical challenges in the fast developing young infant’s brain. Methods on how to approach advanced tractography in the young infant’s brain have hardly been described.

  • Based on a literature review, recommendations are provided to optimize tractography for the developing infant brain, aiming to advance early diagnosis and neuroprotective strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diffusion patterns.
Fig. 2: Diffusion MRI analysis approaches.
Fig. 3: Diffusion MRI (dMRI) tractography process from acquisition to analysis.
Fig. 4: Common approaches for local diffusion modeling.
Fig. 5: Illustrative visualization of white matter reconstruction differences between tractography methods on neonatal dMRI.
Fig. 6: Deterministic and probabilistic tractography.
Fig. 7: In-/exclusion flowchart of identified and eligible papers on diffusion MRI tractography in the infant (0–2 years of age) brain.
Fig. 8: Progression of methods used for infant brain tractography over time.
Fig. 9: Application of tractography algorithms in the neonatal and young infant brain.
Fig. 10

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information Files.

References

  1. Hüppi, P. S. & Dubois, J. Diffusion tensor imaging of brain development. Semin. Fetal Neonatal Med. 11, 489–497 (2006).

    Article  PubMed  Google Scholar 

  2. Emsell, L., Van Hecke, W. & Tournier, J. Introduction to diffusion tensor imaging. In: Diffusion Tensor Imaging (eds Van Hecke, W. et al.) 7–19 (Springer, 2016).

  3. O’Donnell, L. J. & Westin, C. An introduction to diffusion tensor image analysis. Neurosurg. Clin. N. Am. 22, 185–196 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Hecke, W. & Emsell, L. Strategies and challenges in DTI analysis. In Diffusion Tensor Imaging (eds Van Hecke, W. et al.) 153–173 (Springer, 2016).

  5. Kurtcan, S. et al. Diffusion tensor imaging parameters in children with acute hyperammonemic encephalopathy due to urea cycle enzyme defects and organic acidemia. Curr. Med. Imaging Rev. 14, 837–844 (2018).

    Article  CAS  Google Scholar 

  6. Froeling, M., Pullens, P. & Leemans, A. DTI analysis methods: Region of interest analysis. In: Diffusion Tensor Imaging (eds Van Hecke, W. et al.) 175–182 (Springer, 2016).

  7. Dhollander, T. et al. Fixel-based analysis of diffusion MRI: Methods, applications, challenges and opportunities. NeuroImage 241, 118417 (2021).

    Article  PubMed  Google Scholar 

  8. Van Hecke, W., Leemans, A. & Emsell, L. DTI analysis methods: Voxel-based analysis. In: Diffusion Tensor Imaging (eds Van Hecke, W. et al.) 183–203 (Springer, 2016).

  9. Caan, M. W. A. DTI analysis methods: Fibre tracking and connectivity. In Diffusion Tensor Imaging (eds Van Hecke W. et al.) 205–228 (Springer, 2016).

  10. Massaro, A. N. et al. White matter tract integrity and developmental outcome in newborn infants with hypoxic-ischemic encephalopathy treated with hypothermia. Dev. Med. Child. Neurol. 57, 441–448 (2015).

    Article  PubMed  Google Scholar 

  11. van Pul, C., Buijs, J., Vilanova, A., Roos, F. G. & Wijn, P. F. Infants with perinatal hypoxic ischemia: Feasibility of fiber tracking at birth and 3 months. Radiology 240, 203–214 (2006).

    Article  PubMed  Google Scholar 

  12. Jaimes, C. et al. Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease. J. Magn. Reson. Imaging 47, 1626–1637 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Langer, N. et al. White matter alterations in infants at risk for developmental dyslexia. Cereb. Cortex. 27, 1027–1036 (2015).

    PubMed Central  Google Scholar 

  14. Liu, J. et al. Altered lateralization of dorsal language tracts in 6‐week‐old infants at risk for autism. Dev. Sci. 22, e12768 (2019).

    Article  PubMed  Google Scholar 

  15. Chang, S., Garnett, E. O., Etchell, A. & Chow, H. M. Functional and neuroanatomical bases of developmental stuttering: Current insights. Neuroscientist 25, https://doi.org/10.1177/1073858418803594 (2018).

  16. Feldman, H. M., Yeatman, J. D., Lee, E. S., Barde, L. H. F. & Gaman-Bean, S. Diffusion tensor imaging: A review for pediatric researchers and clinicians. J. Dev. Behav. Pediatr. 31, 346–356 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yendiki, A. et al. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. NeuroImage 256, 119146 (2022).

    Article  PubMed  Google Scholar 

  18. Farquharson, S., Tournier, J. High angular resolution diffusion imaging. In: Diffusion Tensor Imaging (eds Van Hecke W. et al.) 383–418 (Springer, 2016).

  19. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Imaging 111, 209–2019 (1996).

    CAS  Google Scholar 

  20. Yang, J. et al. Reliable dual tensor model estimation in single and crossing fibers based on jeffreys prior. PloS One 11 https://doi.org/10.1371/journal.pone.0164336 (2016).

  21. Veraart, J., Sijbers, J. Diffusion kurtosis imaging. In Diffusion Tensor Imaging (eds Van Hecke W. et al.) 407–440 (Springer, 2016).

  22. Lazar, M., Jensen, J. H., Xuan, L. & Helpern, J. A. Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn. Reson. Med. 60, 774–781 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Behrens, T. E. J. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34, 144–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Tuch, D. S. Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004).

    Article  PubMed  Google Scholar 

  26. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).

    Article  PubMed  Google Scholar 

  27. Jeurissen, B., Descoteaux, M., Mori, S. & Leemans, A. Diffusion MRI fiber tractography of the brain. NMR Biomed. 32, e3785 (2019).

    Article  PubMed  Google Scholar 

  28. Jones, D. K. Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med. 2, 341–355 (2010).

    Article  Google Scholar 

  29. Sotiropoulos, S. N., Bai, L., Morgan, P. S., Constantinescu, C. S. & Tench, C. R. Brain tractography using Q-ball imaging and graph theory: Improved connectivities through fibre crossings via a model-based approach. NeuroImage 49, 2444–2456 (2010).

    Article  PubMed  Google Scholar 

  30. Batalle, D., Edwards, A. D. & O’muircheartaigh, J. Annual research review: Not just a small adult brain: Understanding later neurodevelopment through imaging the neonatal brain. J. Child. Psychol. Psychiatr. 59, 350–371 (2017).

    Article  Google Scholar 

  31. Dubois, J. et al. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Partridge, S. C. et al. Diffusion tensor imaging: Serial quantitation of white matter tract maturity in premature newborns. NeuroImage 22, 1302–1314 (2004).

    Article  PubMed  Google Scholar 

  33. Berman, J. I. et al. Quantitative diffusion tensor MRI fiber tractography of sensorimotor white matter development in premature infants. NeuroImage 27, 862–871 (2005).

    Article  PubMed  Google Scholar 

  34. Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y. & Le Bihan, D. Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage 30, 1121–1132 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Kaur, S., Powell, S., He, L., Pierson, C. R. & Parikh, N. A. Reliability and repeatability of quantitative tractography methods for mapping structural white matter connectivity in preterm and term infants at term-equivalent age. PLoS One 9, e85807 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhai, G., Lin, W., Wilber, K. P., Gerig, G. & Gilmore, J. H. Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229, 673–681 (2003).

    Article  PubMed  Google Scholar 

  37. Adibpour, P., Lebenberg, J., Kabdebon, C., Dehaene-Lambertz, G. & Dubois, J. Anatomo-functional correlates of auditory development in infancy. Dev. Cogn. Neurosci. 42, 100752 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Anblagan, D. et al. Tract shape modeling detects changes associated with preterm birth and neuroprotective treatment effects. NeuroImage Clin. 8, 51–58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bastiani, M. et al. Automated processing pipeline for neonatal diffusion MRI in the developing human connectome project. NeuroImage 185, 750–763 (2018).

    Article  PubMed  Google Scholar 

  40. Akazawa, K. et al. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. NeuroImage 128, 167–179 (2016).

    Article  PubMed  Google Scholar 

  41. Fonseca, L. et al. Automatic atlas-based segmentation of brain white matter in neonates at risk for neurodevelopmental disorders. In Modeling, Analysis, and Visualization of Anisotropy. Mathematics and Visualization (eds Schultz T. et al.) 355–372 (Springer, Cham Switzerland, 2017) .

  42. Goodlett, C. B., Fletcher, P. T., Gilmore, J. H. & Gerig, G. Group analysis of DTI fiber tract statistics with application to neurodevelopment. NeuroImage 45, S133–S142 (2009).

    Article  PubMed  Google Scholar 

  43. Tam, E. W. Y. et al. Hyperglycemia associated with acute brain injury in neonatal encephalopathy. NeuroImage Clin. 32, 102835 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Quinones, J. F. et al. Fiber tracing and microstructural characterization among audiovisual integration brain regions in neonates compared with young adults. NeuroImage 254, 119141 (2022).

    Article  PubMed  Google Scholar 

  45. Rajagopal, A. et al. White matter microstructural abnormality in children with hydrocephalus detected by probabilistic diffusion tractography. AJRN. Am. J. Neuroradiol. 34, 2379–2385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eixarch, E., Muñoz-Moreno, E., Bargallo, N., Batalle, D. & Gratacos, E. Motor and cortico-striatal-thalamic connectivity alterations in intrauterine growth restriction. Am. J. Obstet. Gynecol. 214, 725.e1–725.e9 (2016).

    Article  PubMed  Google Scholar 

  47. Kelly, J. P. et al. Cerebral visual impairment characterized by abnormal visual orienting behavior with preserved visual cortical activation. Invest. Ophthalmol. Vis. Sci. 62, 15 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nieuwets, A. et al. Post-hemorrhagic ventricular dilatation affects white matter maturation in extremely preterm infants. Pediatr. Res. 92, 225–232 (2021).

  49. Raguž, M. et al. Structural changes in the cortico-ponto-cerebellar axis at birth are associated with abnormal neurological outcomes in childhood. Clin. Neuroradiol. 31, 1005–1020 (2021).

    Article  PubMed  Google Scholar 

  50. Wang, S., Fan, G., Xu, K. & Wang, C. Potential of diffusion tensor MR imaging in the assessment of cognitive impairments in children with periventricular leukomalacia born preterm. Eur. J. Radiol. 82, 158–164 (2012).

    Article  PubMed  Google Scholar 

  51. Jang, Y. H. et al. Abnormal thalamocortical connectivity of preterm infants with elevated thyroid stimulating hormone identified with diffusion tensor imaging. Sci. Rep. 12, 9257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sa de Almeida, J. et al. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. NeuroImage 207, 116391 (2020).

    Article  PubMed  Google Scholar 

  53. Toselli, B. et al. Improvement of white matter tract reconstruction with constrained spherical deconvolution and track-density mapping in low angular resolution data: A pediatric study and literature review. Front. Pediatr. 5, 182 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paydar, A. et al. Diffusional kurtosis imaging of the developing brain. AJNR. Am. J. Neuroradiol. 35, 808–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tamilia, E. et al. Nutritive sucking abnormalities and brain microstructural abnormalities in infants with established brain injury: A pilot study. J. Perinatol. 39, 1498–1508 (2019).

    Article  PubMed  Google Scholar 

  56. van Kooij, B. et al. Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants. Pediatr. Res. 70, 626–632 (2011).

    Article  PubMed  Google Scholar 

  57. Lockwood Estrin, G. et al. White and grey matter development in utero assessed using motion-corrected diffusion tensor imaging and its comparison to ex utero measures. MAGMA 32, 473–485 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sreedharan, R. M., Aiyappan, S. & Roy, N. Alteration in the number and integrity of white matter tracts in the preterm: A quantitative diffusion tensor imaging and diffusion fibre tractography in children. Indian J. Radiol. Imaging 27, 119–124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pecheva, D. et al. Recent advances in diffusion neuroimaging: Applications in the developing preterm brain. F1000 Res. 7, 1326 (2018).

    Article  Google Scholar 

  60. Parker, G. D. et al. A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data. NeuroImage 65, 433–448 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ogawa, C. et al. Cytotoxic edema at onset in west syndrome of unknown etiology: A longitudinal diffusion tensor imaging study. Epilepsia 59, 440–448 (2018).

    Article  PubMed  Google Scholar 

  62. Whitehead, M. T., Raju, A. & Choudhri, A. F. Normal centrolineal myelination of the callosal splenium reflects the development of the cortical origin and size of its commissural fibers. Neuroradiology 56, 333–338 (2014).

    Article  PubMed  Google Scholar 

  63. Zöllei, L., Jaimes, C., Saliba, E., Grant, P. E. & Yendiki, A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain. NeuroImage 199, 1–17 (2019).

    Article  PubMed  Google Scholar 

  64. Posner, J. et al. Alterations in amygdala–prefrontal circuits in infants exposed to prenatal maternal depression. Transl. Psychiatry 6, 1–8 (2016).

    Article  Google Scholar 

  65. Teli, R. et al. Postnatal microstructural developmental trajectory of corpus callosum subregions and relationship to clinical factors in very preterm infants. Sci. Rep. 7550, 1–12 (2018).

    Google Scholar 

  66. Song, J. W. et al. How accurate are prenatal tractography results? A postnatal in vivo follow-up study using diffusion tensor imaging. Pediatr. Radiol. 48, 486–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Bruïne, F. T. et al. Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants. Eur. Radiol. 21, 538–547 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. de Planque, C. A. et al. A diffusion tensor imaging analysis of frontal lobe white matter microstructure in trigonocephaly patients. Pediatr. Neurol. 131, 42–48 (2022).

    Article  PubMed  Google Scholar 

  69. Lee, S. et al. Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. AJNR Am. J. Neuroradiol. 25, 25–28 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Assaf, Y. & Basser, P. J. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27, 48–58 (2005).

    Article  PubMed  Google Scholar 

  71. Hutter, J. et al. Time-efficient and flexible design of optimized multishell HARDI diffusion. Magn. Reson. Med. 79, 1276–1292 (2018).

    Article  PubMed  Google Scholar 

  72. Ní Bhroin, M. et al. Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. NeuroImage Clin. 28, 102423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Taoudi-Benchekroun, Y. et al. Predicting age and clinical risk from the neonatal connectome. NeuroImage 257, 119319 (2022).

    Article  PubMed  Google Scholar 

  74. Sotiropoulos, S. N. et al. Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013).

    Article  PubMed  Google Scholar 

  75. Tournier, J., Calamante, F. & Connelly, A. Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed. 26, 1775–1786 (2013).

    Article  PubMed  Google Scholar 

  76. Pannek, K., Guzzetta, A., Colditz, P. B. & Rose, S. E. Diffusion MRI of the neonate brain: Acquisition, processing and analysis techniques. Pediatr. Radiol. 42, 1169–1182 (2012).

    Article  PubMed  Google Scholar 

  77. Tax, CMW, Vos, SB, Leemans, A. Checking and correcting DTI data. In: Diffusion Tensor Imaging: A Practical Handbook (eds Van Hecke W et al.) 127–150 https://doi.org/10.1007/978-1-4939-3118-7_7 (Springer, 2016).

  78. Tax, C. M. W., Bastiani, M., Veraart, J., Garyfallidis, E. & Okan Irfanoglu, M. What’s new and what’s next in diffusion MRI preprocessing. NeuroImage 249, 118830 (2022).

    Article  PubMed  Google Scholar 

  79. Shi, Y. & Toga, A. W. Connectome imaging for mapping human brain pathways. Mol. Psychiatry 22, 1230–1240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jeurissen, B., Tournier, J., Dhollander, T., Connelly, A. & Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014).

    Article  PubMed  Google Scholar 

  81. Dell’Acqua, F. et al. A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging. TBME 54, 462–472 (2007).

    Google Scholar 

  82. Schilling, K. G. et al. Challenges in diffusion MRI tractography – lessons learned from international benchmark competitions. Magn. Reson. Imaging 57, 194–209 (2019).

    Article  PubMed  Google Scholar 

  83. Calamuneri, A. et al. White matter tissue quantification at low b-values within constrained spherical deconvolution framework. Front. Neurol. 9, 1–14 (2018).

    Article  Google Scholar 

  84. Daducci, A., Dal Palu, A., Lemkaddem, A. & Thiran, J. COMMIT: Convex optimization modeling for microstructure informed tractography. TMI 34, 246–257 (2015).

    Google Scholar 

  85. Shafieizargar, B. et al. ADEPT: Accurate diffusion echo-planar imaging with multi-contrast shoTs. Magn. Reson. Med. 89, 396–410 (2023).

    Article  PubMed  Google Scholar 

  86. Wasserthal, J., Neher, P. & Maier-Hein, K. H. TractSeg - fast and accurate white matter tract segmentation. NeuroImage 183, 239–253 (2018).

    Article  PubMed  Google Scholar 

  87. Cai, L. Y. et al. Implementation considerations for deep learning with diffusion MRI streamline tractography. Presented at the Medical Imaging With Deep Learning Conference; 10–12 July 2023.

  88. Jiang, H., van Zijl, P. C. M., Kim, J., Pearlson, G. D. & Mori, S. DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Prog. Biomed. 81, 106–116 (2006).

    Article  Google Scholar 

  89. Bassi, L. et al. Diffusion tensor imaging in preterm infants with punctate white matter lesions. Pediatr. Res. 69, 561–566 (2011).

    Article  PubMed  Google Scholar 

  90. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. Fsl. NeuroImage 62, 782 (2011).

    Article  PubMed  Google Scholar 

  91. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).

    Article  PubMed  Google Scholar 

  92. Bell, K. A. et al. Associations of macronutrient intake determined by point-of-care human milk analysis with brain development among very preterm infants. Children 9, 969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. CRL. Computational radiology kit (CRKIT), http://crl.med.harvard.edu/software/, Accessed on 09 August (2023).

  94. Campbell, K. S. J. et al. Prenatal antidepressant exposure and sex differences in neonatal corpus callosum microstructure. Dev. Psychobiol. 63, e22125 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Yeh, F., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C. & Tseng, W. I. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS One 8, e80713 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ceschin et al. Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants. NeuroImage Clin. 8, 462–472 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cha, J. H. et al. Altered microstructure of the splenium of corpus callosum is associated with neurodevelopmental impairment in preterm infants with necrotizing enterocolitis. Ital. J. Pediatr. 48, 1–10 (2022).

    Article  Google Scholar 

  98. de Groot, M. et al. Improving alignment in tract-based spatial statistics: Evaluation and optimization of image registration. NeuroImage Clin. 76, 400–411 (2013).

    Article  Google Scholar 

  99. Dubner, S. E., Rose, J., Bruckert, L., Feldman, H. M. & Travis, K. E. Neonatal white matter tract microstructure and 2-year language outcomes after preterm birth. NeuroImage Clin. 28, 102446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A. & Feldman, H. M. Tract profiles of white matter properties: Automating fiber-tract quantification. PLoS One 7, e49790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mori, S., Crain, B. J., Chacko, V. P. & Van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. ASCLEPIOS. MedINRIA, http://www-sop.inria.fr/asclepios/software/MedINRIA/, Accessed on 09 August (2023).

  103. Gilmore, J. H. et al. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography. AJNR. Am. J. Neuroradiol. 28, 1789–1795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fillard, P., Gerig, G. Analysis tool for diffusion tensor MRI. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, 2879 (MICCAI, 2003).

  105. Hasegawa, T. et al. Development of corpus callosum in preterm infants is affected by the prematurity: In vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr. Res. 69, 249–254 (2011).

    Article  PubMed  Google Scholar 

  106. Hasegawa, T. et al. Cerebellar peduncle injury predicts motor impairments in preterm infants: A quantitative tractography study at term-equivalent age. Brain Dev. 40, 743–752 (2018).

    Article  PubMed  Google Scholar 

  107. Huang, H. et al. White and gray matter development in human fetal, newborn and pediatric brains. NeuroImage 33, 27–38 (2006).

    Article  PubMed  Google Scholar 

  108. Jiang, H. H. et al. Early diagnosis of spastic cerebral palsy in infants with periventricular white matter injury using diffusion tensor imaging. AJNR. Am. J. Neuroradiol. 40, 162–168 (2018).

    Article  PubMed  Google Scholar 

  109. Karimi, D. & Gholipour, A. Diffusion tensor estimation with transformer neural networks. Artif. Intell. Med. 130, 102330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Garyfallidis, E. Towards an accurate brain tractography. PhD thesis (University of Cambridge, 2013).

  111. Wang, E. Diffusion tensor imaging (DTI) tractography. In CyberKnife NeuroRadiosurgery (eds Conti A. et al.) 141–153 (Springer, 2020).

  112. Liu, Y. et al. Structural asymmetries in motor and language networks in a population of healthy preterm neonates at term equivalent age: A diffusion tensor imaging and probabilistic tractography study. NeuroImage 51, 783–788 (2010).

    Article  PubMed  Google Scholar 

  113. Makki, M. I. & Hagmann, C. Regional differences in interhemispheric structural fibers in healthy, term infants. J. Neurosci. Res. 95, 876–884 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Mohammad, S. A. & Abdelkhalek, H. S. Nonketotic hyperglycinemia: Spectrum of imaging findings with emphasis on diffusion-weighted imaging. Neuroradiology 59, 1155–1163 (2017).

    Article  PubMed  Google Scholar 

  115. Morita, T. et al. Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: Evidence from diffusion tensor imaging. Neuroradiology 57, 507–514 (2015).

    Article  PubMed  Google Scholar 

  116. Ng, S. M. et al. Effect of thyroxine on brain microstructure in extremely premature babies: Magnetic resonance imaging findings in the TIPIT study. Pediatr. Radiol. 44, 987–996 (2014).

    Article  PubMed  Google Scholar 

  117. Leemans A., Jeurissen B., Sijbers J., Jones D. K. ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM, 2009).

  118. Masutani, Y., Aoki, S., Abe, O., Hayashi, N. & Otomo, K. MR diffusion tensor imaging: Recent advance and new techniques for diffusion tensor visualization. Eur. J. Radiol. 46, 53–66 (2003).

    Article  PubMed  Google Scholar 

  119. Packman, A. et al. White matter connectivity in neonates at risk of stuttering: Preliminary data. Neurosci. Lett. 781, 136655 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Yushkevich, P. et al. A tract-specific approach to assessing white matter in preterm infants. NeuroImage 157, 675–694 (2017).

    Article  PubMed  Google Scholar 

  121. Rha, D., Chang, W. H., Kim, J., Sim, E. G. & Park, E. S. Comparing quantitative tractography metrics of motor and sensory pathways in children with periventricular leukomalacia and different levels of gross motor function. Neuroradiology 54, 615–621 (2011).

    Article  PubMed  Google Scholar 

  122. Rollins, N. K., Booth, T. N. & Chahrour, M. H. Variability of ponto-cerebellar fibers by diffusion tensor imaging in diverse brain malformations. J. Child Neurol. 32, 271–285 (2017).

    Article  PubMed  Google Scholar 

  123. Sakaue, S. et al. Low‐grade IVH in preterm infants causes cerebellar damage, motor, and cognitive impairment. Pediatr. Int. 63, 1327–1333 (2021).

    Article  PubMed  Google Scholar 

  124. Taylor, P. A. et al. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. Hum. Brain Mapp. 36, 170–186 (2015).

    Article  PubMed  Google Scholar 

  125. Taylor, P. A. & Saad, Z. S. FATCAT: (An efficient) functional and tractographic connectivity analysis toolbox. Brain Connect 3, 523–535 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Thompson, D. K. et al. Accelerated corpus callosum development in prematurity predicts improved outcome. Hum. Brain Mapp. 36, 3733–3748 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang, S., Fan, G. G., Xu, K. & Wang, C. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: A DTI tractography study. Eur. J. Radiol. 83, 997–1004 (2014).

    Article  PubMed  Google Scholar 

  128. Warton, F. L. et al. Prenatal methamphetamine exposure is associated with corticostriatal white matter changes in neonates. Metab. Brain. Dis. 33, 507–522 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Weinstein, M. et al. The motor and visual networks in preterm infants: An fMRI and DTI study. Brain Res. 1642, 603–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Yoo, S. et al. In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest. Radiol. 40, 110–115 (2005).

    Article  PubMed  Google Scholar 

  131. Bravo, E. K., White, M. L., Olney, A. H., McAllister, J. L. & Zhang, Y. D. Novel proximal 14q deletion: Clinical and diffusion tensor imaging tractography findings in a patient with lissencephaly, agenesis of the corpus callosum, and septo-optic dysplasia. AJNR Am. J. Neuroradiol. 33, E16–E18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. DeGrazia, M. et al. Brain characteristics noted prior to and following cranial orthotic treatment. Child Neurol. Open 7, 1–11 (2020).

    Google Scholar 

  133. Gunbey, H. P., Bilgici, M. C., Aslan, K., Aygün, C. & Celik, H. Ectopic cerebellar tissue of the posterior cranial fossa: Diffusion tensor tractography and MR spectroscopy findings. Childs Nerv. Syst. 32, 195–198 (2015).

    Article  PubMed  Google Scholar 

  134. Lee, S. & Kim, J. Diffusion tensor imaging of heterotopia: Changes of fractional anisotropy during radial migration of neurons. Yonsei Med. J. 51, 590–593 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ormitti, F. et al. Diffusion tensor MR imaging tractography of the pyramidal tracts and corpus callosum in children with right-sided congenital hemiparesis: A case report. Neuroradiol. J. 23, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Rollins, N. Semilobar holoprosencephaly seen with diffusion tensor imaging and fiber tracking. Am. J. Neuroradiol. 26, 2148–2152 (2005).

    PubMed  PubMed Central  Google Scholar 

  137. Rollins, N., Reyes, T. & Chia, J. Diffusion tensor imaging in lissencephaly. AJNR Am. J. Neuroradiol. 26, 1583–1586 (2005).

    PubMed  PubMed Central  Google Scholar 

  138. Ball, G. et al. The influence of preterm birth on the developing thalamocortical connectome. Cortex 49, 1711–1721 (2013).

    Article  PubMed  Google Scholar 

  139. Ball, G. et al. Thalamocortical connectivity predicts cognition in children born preterm. Cereb. Cortex 25, 4310–4318 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sotiropoulos, S. N. et al. Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the human connectome project. NeuroImage 134, 396–409 (2016).

    Article  PubMed  Google Scholar 

  141. Baxter, L. et al. Functional and diffusion MRI reveal the neurophysiological basis of neonates’ noxious-stimulus evoked brain activity. Nat. Commun. 12, 1–14 (2021).

    Article  Google Scholar 

  142. Braga, R. M. et al. Development of the corticospinal and callosal tracts from extremely premature birth up to 2 years of age. PloS one 10, 1–15 (2015).

    Article  Google Scholar 

  143. Parikh, N. A., Hershey, A. & Altaye, M. Early detection of cerebral palsy using sensorimotor tract biomarkers in very preterm infants. Pediatr. Neurol. 98, 53–60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zubiaurre-Elorza, L. et al. Auditory structural connectivity in preterm and healthy term infants during the first postnatal year. Dev. Psychobiol. 60, 256–264 (2018).

    Article  PubMed  Google Scholar 

  145. Chandwani, R., Kline, J. E., Harpster, K., Tkach, J. & Parikh, N. A. Early micro‐ and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants. Hum. Brain Mapp. 42, 4708–4721 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tournier, J. et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137 (2019).

    Article  PubMed  Google Scholar 

  147. Grotheer, M. et al. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth. Nat. Commun. 13, 1–12 (2022).

    Article  Google Scholar 

  148. Tournier, J., Calamante, F. & Connelly, A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012).

    Article  Google Scholar 

  149. Kimpton, J. A. et al. Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates. Neuroradiology 63, 573–583 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pieterman, K. et al. Cerebello-cerebral connectivity in the developing brain. Brain. Struct. Funct. 222, 1625–1634 (2017).

    Article  PubMed  Google Scholar 

  151. Salvan, P. et al. Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Hum. Brain Mapp. 38, 3836–3847 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tournier, J., Calamante, F., & Connelly, A. Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM, 2010).

  153. Vaher, K. et al. General factors of white matter microstructure from DTI and NODDI in the developing brain. NeuroImage 254, 119169 (2022).

    Article  PubMed  Google Scholar 

  154. Li, M. et al. How does microstructural in intra-axonal and extra-axonal space change in preterm infants with punctate white matter lesions? In Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM, 2020);

  155. Cohen, A. H. et al. Development of human white matter fiber pathways: From newborn to adult ages. Int. J. Dev. Neurosci. 50, 26–38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kulikova, S. et al. Multi-parametric evaluation of the white matter maturation. Brain. Struct. Funct. 220, 3657–3672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Duclap, D. et al. Connectomist-2.0: A novel diffusion analysis toolbox for BrainVISA. In Proceedings of the 29th European Society for Magnetic Resonance in Medicine and Biology meeting (ESMRMB, 2012).

  158. Song, J. W. et al. Asymmetry of white matter pathways in developing human brains. Cereb. Cortex 25, 2883–2893 (2015).

    Article  PubMed  Google Scholar 

  159. Re, T. J. et al. Magnetic resonance fiber tracking in a neonate with hemimegalencephaly. J. Neuroimaging 25, 844–847 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Smith, S. M. et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006).

    Article  PubMed  Google Scholar 

  161. Van Essen, D. C. et al. The WU-minn human connectome project: An overview. NeuroImage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  162. Yeh, F., Wedeen, V. J. & Tseng, W. I. Generalized Q-sampling imaging. IEEE Trans. Med. Imaging 29, 1626–1635 (2010).

    Article  PubMed  Google Scholar 

Download references

Funding

A.S.V. is jointly supported by the Royal Netherlands Academy of Arts and Sciences (KNAW, Amsterdam, The Netherlands) ter Meulen Fund [KNAWWF/1327/TMB202126], Isala Science and Innovation Fund (Zwolle, the Netherlands) and Science Fund Medical Specialist Isala (Zwolle, the Netherlands). L.M.L.’s research program is jointly supported by the Alberta Children’s Hospital Foundation, Alberta Children’s Hospital Research Institute and the Calgary Health Foundation (Calgary, Canada). C.M.W.T. is supported by the Wellcome Trust [215944/Z/19/Z] and a Veni grant (17331) from the Dutch Research Council (NWO). The sponsors had no role in the design and conduct of the study, the collection, management, analysis and interpretation of the data, the preparation, review and approval of the manuscript, or the decision to submit the manuscript for publication. For the purpose of open access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Contributions

Anouk Verschuur: Conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, validation, visualization, writing – original draft, writing – review & editing. Regan King: Conceptualization, data curation, investigation, methodology, validation, writing – original draft, writing – review & editing. Chantal Tax: Conceptualization, methodology, supervision, validation, writing – review & editing. Martijn Boomsma: Conceptualization, funding acquisition, methodology, supervision, validation, writing – review & editing. Gerda Meijler: Conceptualization, funding acquisition, methodology, supervision, validation, writing – review & editing. Alexander Leemans: Conceptualization, methodology, supervision, validation, writing – review & editing. Lara Leijser: Conceptualization, data curation, funding acquisition, investigation, methodology, supervision, validation, writing – original draft, writing – review & editing.

Corresponding author

Correspondence to Anouk S. Verschuur.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verschuur, A.S., King, R., Tax, C.M.W. et al. Methodological considerations on diffusion MRI tractography in infants aged 0–2 years: a scoping review. Pediatr Res 97, 880–897 (2025). https://doi.org/10.1038/s41390-024-03463-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03463-2

This article is cited by

Search

Quick links