Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Gut microbiome and inflammation in response to increasing intermittent hypoxia in the neonatal rat

Abstract

Background

Intermittent hypoxia (IH) and oxidative stress play key roles in gut dysbiosis and inflammation. We tested the hypothesis that increasing numbers of daily IH episodes cause microbiome dysbiosis and severe gut injury.

Methods

Neonatal rats were exposed to hyperoxia (Hx), growth restriction, and IH. For IH, pups were exposed to 2–12 daily episodes from birth (P0) to postnatal day 7 (7D) or P0-P14 (14D), with or without recovery in room air (RA) until P21. Animals raised in RA from P0 to P21 served as normoxia controls. Stool was expressed from the large intestines for microbiome analysis, and tissue samples were assessed for histopathology and biomarkers of inflammation.

Results

Hx and IH caused a significant reduction in the number and diversity of organisms. The severity of gut injury and levels of inflammatory cytokines and TLR4 increased, while total glutathione (tGSH) declined, with increasing daily IH episodes. The number of organisms correlated with the villi number (p < 0.05) and tGSH depletion (p < 0.001).

Conclusions

The critical number of daily IH episodes that the newborn gut may sustain is 6, beyond which irreversible damage occurs. The immature gut is highly susceptible to IH-induced injury, and IH may contribute to pathological outcomes in the immature gut.

Impact statement

  1. 1.

    The neonatal gut at birth is highly susceptible to intermittent hypoxia (IH) injury.

  2. 2.

    IH causes gut dysbiosis, inflammation, and glutathione depletion.

  3. 3.

    The severity of gut injury worsens as a function of increasing daily IH episodes.

  4. 4.

    The critical number of daily IH episodes that the newborn gut may sustain is 6, beyond which irreversible damage occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative H&E stained images of large intestines from neonatal rats exposed to room air (RA, top panels), hyperoxia (50% O2; middle panels), or intermittent hypoxia (IH, lower panels).
Fig. 2: Changes in the relative proportion of the most abundant microorganisms in response to increasing daily neonatal IH episodes.
Fig. 3: Effect of increasing daily IH episodes on IL-1β, (panels a and d), IL-6 (panels b and e), and TNFα (panels c and f) in the large intestine homogenates.
Fig. 4: Effect of increasing daily IH episodes on TLR4, TGFβ, and total glutathione (tGSH) levels in the large intestine homogenates.
Fig. 5: Representative TLR-4 immunostaining.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Saugstad, O. D. Hypoxanthine as an indicator of hypoxia: its role in health and disease through free radical production. Pediatr. Res. 23, 143–150 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Perez, M., Robbins, M. E., Revhaug, C. & Saugstad, O. D. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 142, 61–72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beharry, K. D. et al. Neonatal intermittent hypoxia, reactive oxygen species, and oxygen-induced retinopathy. React. Oxyg. Species 3, 12–25 (2017).

    Google Scholar 

  4. Di Fiore, J. M., Martin, R. J. & Gauda, E. B. Apnea of prematurity-perfect storm. Respir. Physiol. Neurobiol. 189, 213–222 (2013).

    Article  PubMed  Google Scholar 

  5. Ford, H., Watkins, S., Reblock, K. & Rowe, M. The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J. Pediatr. Surg. 32, 275–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Wohlrab, P. et al. Oxygen conditions oscillating between hypoxia and hyperoxia induce different effects in the pulmonary endothelium compared to constant oxygen conditions. Physiol. Rep. 9, e14590 (2019).

    Google Scholar 

  7. Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aceti, A., Beghetti, I., Martini, S., Faldella, G. & Corvaglia, L. Oxidative stress and necrotizing enterocolitis: pathogenetic mechanisms, opportunities for intervention, and role of human milk. Oxid. Med. Cell Longev. 2018, 7397659 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schnabl, K., Van Aerde, J. E., Thomson, A. B. & Clandinin, M. T. Necrotizing enterocolitis: a multifactorial disease with no cure. World J. Gastroenterol. 14, 2142–2161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yee, W. H. et al. Incidence and timing of presentation of necrotizing enterocolitis in preterm infants. Pediatrics 129, e298–e304 (2012).

    Article  PubMed  Google Scholar 

  11. Zozaya, C. et al. Incidence, treatment, and outcome trends of necrotizing enterocolitis in preterm infants: a multicenter cohort study. Front. Pediatr. 8, 188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nino, D. F., Sodhi, C. P. & Hackam, D. J. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 13, 590–600 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leaphart, C. L. et al. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J. Immunol. 179, 4808–4820 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Claud, E. Neonatal necrotizing enterocolitis–inflammation and intestinal immaturity. Antiinflamm. Antiallergy Agents Med. Chem. 8, 248–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hosny, M., Cassir, N. & La Scola, B. Updating on gut microbiota and its relationship with the occurrence of necrotizing enterocolitis. Hum. Microb. J. 4, 14–19 (2017).

    Article  Google Scholar 

  16. Habbout, A., Li, N., Rochette, L. & Vergely, C. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J. Nutr. 143, 553–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Parra-Vargas, M., Ramon-Krauel, M., Lerin, C. & Jimenez-Chillaron, J. C. Size does matter: litter size strongly determines adult metabolism in rodents. Cell Metab. 32, 334–340 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Beharry, K. D. et al. Hydrogen peroxide accumulation in the choroid during intermittent hypoxia increases risk of severe oxygen-induced retinopathy in neonatal rats. Investig. Ophthalmol. Vis. Sci. 54, 7644–7657 (2013).

    Article  CAS  Google Scholar 

  19. Coleman, R. et al. Effects of brief clustered versus dispersed hypoxiv episodes on systemic and ocular growth factors in a rat model of OIR. Pediatr. Res. 64, 50–55 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Bodkin, D. et al. Neonatal intermittent hypoxia, fish oil, and/or antioxidant supplementation on gut microbiota in neonatal rats. Pediatr. Res 92, 109–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Cuna, A., Morowitz, M. J., Ahmed, I., Umar, S. & Sampath, V. Dynamics of the preterm gut microbiome in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G411–G419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puiman, P. & Stoll, B. Animal models to study neonatal nutrition in humans. Curr. Opin. Clin. Nutr. Metab. Care 11, 601–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. McCracken, V. J. & Lorenz, R. G. The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol. 3, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, J. et al. Disrupted intestinal structure in a rat model of intermittent hypoxia. Mol. Med. Rep. 13, 4407–4413 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Xing, J. et al. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat. Commun. 9, 2020 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu, C. L. et al. Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment. World J. Gastroenterol. 20, 4662–4674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaplina, A. et al. Necrotizing enterocolitis: the role of hypoxia, gut microbiome, and microbial metabolites. Int J. Mol. Sci. 24, 2471 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain-gut-microbiome axis. Cell Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tripathi, A. et al. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 12, 843–850 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Korpela, K. et al. Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 8, 2453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mai, V. et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One 6, e20647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson, A., Bogie, B., Chaaban, H. & Burge, K. The nonbacterial microbiome: fungal and viral contributions to the preterm infant gut in health and disease. Microorganisms 11, 909 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7, 14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Fiore, J. M. & Vento, M. Intermittent hypoxemia and oxidative stress in preterm infants. Respir. Physiol. Neurobiol. 266, 121–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Denning, N. L. & Prince, J. M. Neonatal intestinal dysbiosis in necrotizing enterocolitis. Mol. Med. 24, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pammi, M. et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 5, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Han, N., Pan, Z., Liu, G., Yang, R. & Yujing, B. Hypoxia: the “Invisible Pusher” of gut microbiota. Front. Microbiol. 12, 690600 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, Z. P. et al. Overgrowth of Lactobacillus in gastric cancer. World J. Gastrointest. Oncol. 13, 1099–1108 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. Lactobacillus reuteri in its biofilm state promotes neurodevelopment after experimental necrotizing enterocolitis in rats. Brain Behav. Immun. Health 14, 100256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, W. et al. SIGIRR mutation in human necrotizing enterocolitis (NEC) disrupts STAT3-dependent microRNA expression in neonatal gut. Cell Mol. Gastroenterol. Hepatol. 13, 425–440 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Hackam, D. J., Afrazi, A., Good, M. & Sodhi, C. P. Innate immune signaling in the pathogenesis of necrotizing enterocolitis. Clin. Dev. Immunol. 2013, 475415 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vyas, D. et al. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine. Histol. Histopathol. 22, 623–630 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda, H. et al. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 42, 530–537 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33, 127–148 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Schaefer, E. et al. Intermittent hypoxia is a proinflammatory stimulus resulting in IL-6 expression and M1 macrophage polarization. Hepatol. Commun. 1, 326–337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, L. et al. Severe intermittent hypoxia modulates the macrophage phenotype and impairs wound healing through downregulation of HIF-2α. Nat. Sci. Sleep 14, 1511–1520 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Almonaem, E. R. A., Almotaleb, G. S. A., Alhameed, M. H. A. & El-Shimi, O. S. Utility of transforming growth factor beta-1 in diagnosis of neonatal necrotizing enterocolitis. J. Neonatal. Perinat. Med. 15, 795–801 (2022).

    Article  Google Scholar 

  49. Zhang, X. et al. β-glucan protects against necrotizing enterocolitis in mice by inhibiting intestinal inflammation, improving the gut barrier, and modulating gut microbiota. J. Transl. Med. 21, 14 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li, J. et al. Ferroptosis: past, present and future. Cell Death Dis. 11, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bensouda, B., Tarazi, S. E., Ali, N., Mandel, R. & Sant’Anna, G. M. Episodes of apnea, desaturation and bradycardia and the development of necrotizing enterocolitis in preterm infants: a case-control study. J. Matern Fetal Neonatal. Med. 26, 52–55 (2013).

    Article  PubMed  Google Scholar 

  52. Thänert, R., Keen, E. C., Dantas, G., Warner, B. B. & Tarr, P. I. Necrotizing enterocolitis and the microbiome: current status and future directions. J. Infect. Dis. 223, S257–S263 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible through the Eunice Kennedy Shriver National Institute of Child Health & Human Development Grant #U54HD071594.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to the conception (M.L., J.V.A., K.D.B.), methodology and design of the work (M.L., J.V.A., K.D.B.), investigation (M.L., C.L.C., M.M., M.M., K.D.B.), acquisition and formal analysis (M.L., C.L.C., M.M., M.M., K.D.B.), validation (M.L., J.V.A., K.D.B.), data curation (M.L., K.D.B.), interpretation of the data (M.L., J.V.A., K.D.B.), visualization (M.L., C.L.C., M.M., M.M., K.D.B.), original draft (M.L.), and review and approval of the submitted version (M.L., C.L.C., M.M., M.M., J.V.A., K.D.B.), supervision (J.V.A., K.D.B.), project administration (J.V.A., K.D.B.), funding acquisition (J.V.A.).

Corresponding author

Correspondence to Kay D. Beharry.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latkowska, M., Cai, C.L., Mitrou, M. et al. Gut microbiome and inflammation in response to increasing intermittent hypoxia in the neonatal rat. Pediatr Res 97, 2126–2135 (2025). https://doi.org/10.1038/s41390-024-03569-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03569-7

This article is cited by

Search

Quick links