Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Preterm birth is associated with dystonic features and reduced cortical parvalbumin immunoreactivity in mice

Abstract

Background

Preterm birth is a common cause of dystonia. Though dystonia is often associated with striatal dysfunction after neonatal brain injury, cortical dysfunction may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition is associated with genetic and idiopathic dystonias. To investigate cortical dysfunction and dystonia following preterm birth, we developed a new model of preterm birth in mice.

Methods

We induced preterm birth in C57BL/6J mice at embryonic day 18.3, ~24 h early. Leg adduction variability and amplitude, metrics we have shown distinguish between dystonia from spasticity during gait in people with CP, were quantified from gait videos of mice. Parvalbumin-positive interneurons, the largest population of cortical inhibitory interneurons, were quantified in the sensorimotor cortex and striatum.

Results

Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm also demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, but not the striatum, suggesting dysfunction of cortical inhibition.

Conclusions

These data may suggest an association between cortical dysfunction and dystonic gait features following preterm birth. We propose that our novel mouse model of preterm birth can be used to study this association.

Impact

  • Mouse models of true preterm birth are valuable for studying clinical complications of prematurity.

  • Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features.

  • Mice born preterm demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical inhibition.

  • Mice born preterm do not demonstrate changes in parvalbumin immunoreactivity in the striatum.

  • Cortical dysfunction may be associated with dystonic gait features following preterm birth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Locomotion quantification.
Fig. 2: Gestational ages, litter sizes, and weights in mice born at term and preterm.
Fig. 3: Measures of locomotor impairment.
Fig. 4: Measures of clinically-validated dystonic gait features.
Fig. 5: Quantification of parvalbumin immunoreactivity in the sensorimotor cortex.
Fig. 6: Quantification of parvalbumin immunoreactivity in the striatum.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available from qualified investigators upon request.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Himmelmann, K. et al. Dyskinetic cerebral palsy in Europe: trends in prevalence and severity. Arch. Dis. Child 94, 921–926 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Steeves, T., Day, L., Dykeman, J., Jette, N. & Pringsheim, T. The prevalence of primary dystonia: a systematic review and meta-analysis. Mov. Disord. 27, 1789–1796 (2012).

    Article  PubMed  Google Scholar 

  3. Himmelmann, K. & Uvebrant, P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007-2010. Comp. Study 107, 462–468 (2018).

    CAS  Google Scholar 

  4. Van Naarden Braun, K. et al. Birth prevalence of cerebral palsy: a population-based study. Pediatrics 137, 1–9 (2016).

    PubMed  Google Scholar 

  5. Ueda, K., Aravamuthan, B. R. & Pearson, T. S. Dystonia in individuals with spastic cerebral palsy and isolated periventricular leukomalacia. Dev. Med. Child Neurol. 65, 94–99 (2023).

    Article  PubMed  Google Scholar 

  6. Chintalapati, K., Pearson, T. S., Ueda, K. & Aravamuthan, B. R. Brain region size differences associated with dystonia in people with cerebral palsy born premature. Pediatr. Neurol. 148, 8–13 (2023).

    Article  PubMed  Google Scholar 

  7. Albanese, A. et al. Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sanger, T. D., Delgado, M. R., Gaebler-Spira, D., Hallett, M. & Mink, J. W. Classification and definition of disorders causing hypertonia in childhood. in Pediatrics vol. 111 e89–e97 (American Academy of Pediatrics, 2003).

  9. Sanger, T. D. et al. Definition and classification of hyperkinetic movements in childhood. Mov. Disord. 25, 1538–1549 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aravamuthan, B. R., Pearson, T. S., Chintalapati, K. & Ueda, K. Under-recognition of leg dystonia in people with cerebral palsy. Ann. Child Neurol. Soc. 1, 162–167 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miao, H., Mathur, A. M. & Aravamuthan, B. R. Spasticity and dystonia are underidentified in young children at high risk for cerebral palsy. J. Child Neurol. 37, 105–111 (2022).

    Article  PubMed  Google Scholar 

  12. Bohn, E., Goren, K., Switzer, L., Falck-Ytter, Y. & Fehlings, D. Pharmacological and neurosurgical interventions for individuals with cerebral palsy and dystonia: a systematic review update and meta-analysis. Dev. Med. Child Neurol. 63, 1038–1050 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Clancy, B., Finlay, B. L., Darlington, R. B. & Anand, K. J. S. Extrapolating brain development from experimental species to humans. Neurotoxicology 28, 931–937 (2007).

    Article  PubMed  Google Scholar 

  14. Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M. & Noble-Haeusslein, L. J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 106–107, 1–16 (2013).

  15. Mccarthy, R. et al. Mouse models of preterm birth: suggested assessment and reporting guidelines. Biol. Reprod. 99, 922–937 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Le Dieu-Lugon, B. et al. Why considering sexual differences is necessary when studying encephalopathy of prematurity through rodent models. Eur. J. Neurosci. 52, 2560–2574 (2020).

    Article  PubMed  Google Scholar 

  17. Chen, R. et al. Impact of gestational age on risk of cerebral palsy: unravelling the role of neonatal morbidity. Int J. Epidemiol. 50, 1852 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boyle, C. A. et al. Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics 127, 1034–1042 (2011).

    Article  PubMed  Google Scholar 

  19. Oleas, J., Yokoi, F., Deandrade, M. P., Pisani, A. & Li, Y. Engineering animal models of dystonia. Mov. Disord. 28, 990–1000 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Richter, F. & Richter, A. Genetic animal models of dystonia: common features and diversities. Prog. Neurobiol. 121, 91–113 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Tassone, A., Sciamanna, G., Bonsi, P., Martella, G. & Pisani, A. Experimental models of dystonia. Int. Rev. Neurobiol. 98, 551–572 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Aravamuthan, B. R. et al. Determinants of gait dystonia severity in cerebral palsy. Dev. Med. Child Neurol. 65, 968–977 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aravamuthan, B. R. et al. Gait features of dystonia in cerebral palsy. Dev. Med. Child Neurol. 63, 748–754 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aravamuthan, B. R. & Waugh, J. L. Localization of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Pediatr. Neurol. 54, 11–21 (2016).

    Article  PubMed  Google Scholar 

  25. Chintalapati, K., Miao, H., Mathur, A., Neil, J. & Aravamuthan, B. R. Objective and clinically feasible analysis of diffusion MRI data can help predict dystonia after neonatal brain injury. Pediatr. Neurol. 118, 6–11 (2020).

    Article  PubMed  Google Scholar 

  26. Eskow Jaunarajs, K. L., Bonsi, P., Chesselet, M. F., Standaert, D. G. & Pisani, A. Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog. Neurobiol. 127–128, 91–107 (2015).

    Article  PubMed  Google Scholar 

  27. Eskow Jaunarajs, K. L., Scarduzio, M., Ehrlich, M. E., Mcmahon, L. L. & Standaert, D. G. Diverse mechanisms lead to common dysfunction of striatal cholinergic interneurons in distinct genetic mouse models of Dystonia. J. Neurosci. 39, 7195–7205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bonsi, P. et al. Centrality of striatal cholinergic transmission in basal ganglia function. Front. Neuroanat. 5, 6 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pappas, S. S. et al. Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons. Elife 4, 1–25 (2015).

    Article  Google Scholar 

  30. Corp, D. T. et al. Network localization of cervical dystonia based on causal brain lesions. Brain 142, 1660 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garibotto, V. et al. In vivo evidence for GABA(A) receptor changes in the sensorimotor system in primary dystonia. Mov. Disord. 26, 852–857 (2011).

    Article  PubMed  Google Scholar 

  32. Miocinovic, S., De Hemptinne, C., Qasim, S., Ostrem, J. L. & Starr, P. A. Patterns of cortical synchronization in isolated dystonia compared with Parkinson disease. JAMA Neurol. 72, 1244–1251 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Norris, S. A. et al. Regional, not global, functional connectivity contributes to isolated focal dystonia. Neurology 95, E2246–E2258 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gallea, C. et al. Loss of inhibition in sensorimotor networks in focal hand dystonia. Neuroimage Clin. 17, 90–97 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nahar, L., Delacroix, B. M. & Nam, H. W. The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Front. Psychiatry 12, 679960 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lim, L., Mi, D., Llorca, A. & Marín, O. Development and functional diversification of cortical interneurons. Neuron 100, 294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Juarez, P. & Martínez Cerdeño, V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front. Psychiatry 13, 913550 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang, X., Lachance, M. & Rossignol, E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Prog. Brain Res. 226, 81–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Påhlman, M., Gillberg, C. & Himmelmann, K. Autism and attention-deficit/hyperactivity disorder in children with cerebral palsy: high prevalence rates in a population-based study. Dev. Med. Child Neurol. 63, 320–327 (2021).

    Article  PubMed  Google Scholar 

  41. Dos Santos Rufino, A., Påhlman, M., Olsson, I. & Himmelmann, K. Characteristics and challenges of epilepsy in children with cerebral palsy-a population-based study. J. Clin. Med. 12, 346 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hamann, M., Richter, A., Meillasson, F. V., Nitsch, C. & Ebert, U. Age-related changes in parvalbumin-positive interneurons in the striatum, but not in the sensorimotor cortex in dystonic brains of the dtsz mutant hamster. Brain Res. 1150, 190–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Morin, C. et al. The impact of mouse preterm birth induction by RU-486 on microglial activation and subsequent hypomyelination. Int. J. Mol. Sci. 23, 4867 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernard, N. et al. Continuation of pregnancy after first-trimester exposure to mifepristone: an observational prospective study. BJOG 120, 568–575 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Hill, N. C. W., Selinger, M., Ferguson, J. & Mackenzie, I. Z. The placental transfer of mifepristone (RU 486) during the second trimester and its influence upon maternal and fetal steroid concentrations. Br. J. Obstet. Gynaecol. 97, 406–411 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Broom, L. et al. A translational approach to capture gait signatures of neurological disorders in mice and humans. Sci. Rep. 7, 1–17 (2017).

    Article  CAS  Google Scholar 

  49. Brégou Bourgeois, A., Mariani, B., Aminian, K., Zambelli, P. Y. & Newman, C. J. Spatio-temporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture 39, 436–442 (2014).

    Article  PubMed  Google Scholar 

  50. Carcreff, L. et al. Comparison of gait characteristics between clinical and daily life settings in children with cerebral palsy. Sci. Rep. 10, 1–11 (2020).

    Article  Google Scholar 

  51. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. GPOWER: a general power analysis program. Behav. Res. Methods 39, 175–191 (2007).

    Article  PubMed  Google Scholar 

  52. Vannucci, S. J. & Back, S. A. The Vannucci model of hypoxic-ischemic injury in the neonatal rodent: 40 years later. Dev. Neurosci. 44, 186–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Rice, J. E., Vannucci, R. C. & Brierley, J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131–141 (1981).

    Article  PubMed  Google Scholar 

  54. Mcclelland, V. M. et al. Somatosensory evoked potentials and central motor conduction times in children with dystonia and their correlation with outcomes from deep brain stimulation of the globus pallidus internus. Clin. Neurophysiol. 129, 473–486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Johnston, M. V. & Hagberg, H. Sex and the pathogenesis of cerebral palsy. Dev. Med. Child Neurol. 49, 74–78 (2007).

    Article  PubMed  Google Scholar 

  56. Jinnah, H. A. et al. Rodent models for dystonia research: characteristics, evaluation, and utility. Mov. Disord. 20, 283–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Chalard, A., Amarantini, D., Tisseyre, J., Marque, P. & Gasq, D. Spastic co-contraction is directly associated with altered cortical beta oscillations after stroke. Clin. Neurophysiol. 131, 1345–1353 (2020).

    Article  PubMed  Google Scholar 

  58. Gracies, J.-M. Pathophysiology of spastic paresis. II: emergence of muscle overactivity. Muscle Nerve 31, 552–571 (2005).

    Article  PubMed  Google Scholar 

Download references

Funding

Funding supporting this work is from the National Institutes of Neurological Disorders and Stroke: 1K08NS117850-01A1 (BRA) and 1R01NS112234 (RG).

Author information

Authors and Affiliations

Authors

Contributions

Kat Gemperli helped design the study, contributed to data collection, carried out data analyses, and critically reviewed and revised the manuscript. Femi Folorunso, Ben Norin, Rebecca Joshua, Rachel Rykowski, and Clayton Hill: contributed to data collection, carried out data analyses, and critically reviewed and revised the manuscript. Rafael Galindo helped design the study, supervised data collection, and critically reviewed and revised the manuscript. Bhooma Aravamuthan conceptualized and designed the study, supervised data collection and analysis, drafted the initial manuscript, and critically reviewed and revised the manuscript.

Corresponding author

Correspondence to Bhooma R. Aravamuthan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gemperli, K., Folorunso, F., Norin, B. et al. Preterm birth is associated with dystonic features and reduced cortical parvalbumin immunoreactivity in mice. Pediatr Res 97, 2475–2484 (2025). https://doi.org/10.1038/s41390-024-03603-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03603-8

Search

Quick links