Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Bronchopulmonary dysplasia demonstrates dysregulated autotaxin/lysophosphatidic acid signaling in a neonatal mouse model

Abstract

Background

Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting premature infants who require oxygen supplementation and ventilator therapy to support their underdeveloped lungs. Autotaxin (ATX), an enzyme that generates the bioactive phospholipid lysophosphatidic acid (LPA), which acts via G-protein coupled receptors, has been implicated in numerous pulmonary diseases. In this study, we explored the pathophysiological role of the ATX/LPA signaling pathway in BPD.

Methods

Neonatal mice were exposed to normoxia or hyperoxia (85%) for 14 days from birth while being treated with vehicle, ATX inhibitor or LPA receptor 1 (LPA1) inhibitor. In vitro studies utilized human lung fibroblast (HLF) cells exposed to room air, 85% oxygen, or LPA for varying time periods. Supernatants and cells were collected for assays and Western blotting.

Results

Animals exposed to hyperoxia showed elevated expression of ATX, ATX activity, and LPA1. Inhibiting ATX or LPA1 improved alveolarization, reduced inflammation, and mitigated extracellular matrix deposition and lysyl oxidase (LOX) expression. LPA1 inhibition leading to reduced LOX expression was associated with a reduction in phosphorylation of AKT.

Conclusion

Hyperoxia increases the expression of ATX and LPA1 associated with increased LOX in the lungs. Targeting the ATX/LPA1 pathway could be a potential therapeutic approach to BPD.

Impact

  • Exposure to hyperoxia increases the expression and activity of autotaxin (ATX), as well as expression of LPA receptor 1 (LPA1).

  • Increased expression of ATX influences extra cellular matrix (ECM) remodeling.

  • Inhibitors targeting the ATX/LPA pathway could offer a new therapeutic approach to bronchopulmonary dysplasia (BPD), potentially mitigating ECM deposition and improving lung development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ATX expression is elevated in human patients with BPD.
Fig. 2: ATX expression is elevated in lung tissue of neonatal mice following 85% oxygen exposure.
Fig. 3: Inhibiting ATX activity with GLPG1690 improves alveolarization in neonatal mouse pups following HYX-induced lung injury.
Fig. 4: Inhibiting ATX activity with GLPG1690 attenuates HYX-induced inflammatory responses.
Fig. 5: Inhibiting ATX activity with GLPG1690 improves lung function following hyperoxia exposure.
Fig. 6: Treatment with GLPG1690 attenuates HYX-induced ECM deposition.
Fig. 7: Inhibiting ATX activity ameliorates HYX-induced LOX expression in neonatal mice.
Fig. 8: Exogenous addition of LPA increases expression of ECM proteins and can induce alveolar arrest ECM proteins, similar to that seen in HYX.
Fig. 9: LPA1 is elevated following hyperoxia exposure.
Fig. 10: Antagonizing LPA1, with BMS-986278, protects neonates from HYX-induced lung injury.
Fig. 11: Antagonizing LPA1 attenuates hyperoxia-induced ECM deposition in neonatal mice.
Fig. 12: Signaling via LPA1 activates PI3K/AKT to induce expression of LOX.
Fig. 13: Proposed signaling pathway for the role of ATX/LPA in the pathogenesis of BPD.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the published article along with the supplementary information files. No other data sets were generated or analyzed.

References

  1. Hintz, S. R. et al. Predicting time to hospital discharge for extremely preterm infants. Pediatrics 125, 146–154 (2010).

    Article  Google Scholar 

  2. Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 126, 443–156 (2010).

    Article  PubMed  Google Scholar 

  3. Thekkeveedu, R. K., Guaman, M. C. & Shivanna, B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Resp. Med. 132, 170–177 (2017).

    Article  Google Scholar 

  4. Bonikos, D. S., Bensch, K. G. & Northway, W. H. Oxygen toxicity in the newborn. The effect of chronic continuous 100 percent oxygen exposure on the lungs of newborn mice. Am. J. Pathol. 85, 623–650 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dreyfuss, D. & Saumon, G. Ventilator-induced Lung Injury. Am. J. Resp. Crit. Care 157, 294–323 (1998).

    Article  CAS  Google Scholar 

  6. Pasha, A. B., Chen, X.-Q. & Zhou, G.-P. Bronchopulmonary dysplasia: Pathognesis and treatment. Exp. Ther. Med. 16, 4315–4321 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hennessy, E. M. et al. Respiratory health in pre-school and school age children following extremely preterm birth. Arch. Dis. Child. 93, 1037 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Shahzad, T., Radajewski, S., Chao, C.-M., Bellusci, S. & Ehrhardt, H. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol. Cell Pediatrics 3, 23 (2016).

    Article  Google Scholar 

  9. Thibeault, D. W., Mabry, S. M., Ekekezie, I. I., Zhang, X. & Truog, W. E. Collagen Scaffolding During Development and Its Deformation With Chronic Lung Disease. Pediatrics 111, 766–776 (2003).

    Article  PubMed  Google Scholar 

  10. Pierce, R. A. et al. Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am. J. Physiol. Lung 272, L452–L460 (1997).

    Article  CAS  Google Scholar 

  11. Kumarasamy, A. et al. Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs. Am. J. Resp. Crit. Care 180, 1239–1252 (2009).

    Article  CAS  Google Scholar 

  12. Ha, A. W. et al. Sphingosine kinase 1 regulates lysyl oxidase through STAT3 in hyperoxia-mediated neonatal lung injury. Thorax 77, 47–57 (2022).

    Article  PubMed  Google Scholar 

  13. Li, H. et al. Association between plasma lysophosphatidic acid levels and bronchopulmonary dysplasia in extremely preterm infants: A prospective study. Pediatr. Pulmonol. 58, 3516–3522 (2023).

    Article  PubMed  Google Scholar 

  14. Umezu-Goto, M. et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol. 158, 227–233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boutin, J. A. & Ferry, G. Autotaxin. Cell. Mol. Life Sci. 66, 3009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Croset, M., Brossard, N., Polette, A. & Lagarde, M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem. J. 345, 61 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moolenaar, W. H. Development of Our Current Understanding of Bioactive Lysophospholipids. Ann. Ny. Acad. Sci. 905, 1–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Stortelers, C., Kerkhoven, R. & Moolenaar, W. H. Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling. BMC Genomics 9, 387 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Asokan, S. B. et al. Lysophosphatidic acid provokes fibroblast chemotaxis through combinatorial regulation of myosin II. Biorxiv 355610 (2019).

  20. Toews, M. L., Ediger, T. L., Romberger, D. J. & Rennard, S. I. Lysophosphatidic acid in airway function and disease. Biochimica Et. Biophysica Acta Bba – Mol. Cell. Biol. Lipids 1582, 240–250 (2002).

    CAS  Google Scholar 

  21. Hayashi, K. et al. Phenotypic Modulation of Vascular Smooth Muscle Cells Induced by Unsaturated Lysophosphatidic Acids. Circ. Res. 89, 251–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Tager, A. M. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 14, 45–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Park, G. Y. et al. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. Am. J. Resp. Crit. Care Med. 188, 928–940 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, Q. et al. Lysophosphatidic acid species are associated with exacerbation in chronic obstructive pulmonary disease. BMC Pulm. Med. 21, 301 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mouratis, M.-A. et al. Autotaxin and Endotoxin-Induced Acute Lung Injury. Plos One 10, e0133619 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shim, G. H. et al. Expression of autotaxin and lysophosphatidic acid receptors 1 and 3 in the developing rat lung and in response to hyperoxia. Free Radic. Res 49, 1362–1370 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, X. et al. Deficiency or inhibition of lysophosphatidic acid receptor 1 protects against hyperoxia‐induced lung injury in neonatal rats. Acta Physiol. 216, 358–375 (2016).

    Article  CAS  Google Scholar 

  28. Ha, A. W. et al. Neonatal therapy with PF543, a sphingosine kinase 1 inhibitor, ameliorates hyperoxia-induced airway remodeling in a murine model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 319, L497–L512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Harijith, A. et al. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L337–L351 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang, X. et al. Inhibition of autotaxin with GLPG1690 increases the efficacy of radiotherapy and chemotherapy in a mouse model of breast cancer. Mol. Cancer Ther. 19, 63–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Laurent, G. J. Collagen in normal lung and during pulmonary fibrosis. Cellular Biology of the Lung 311-325 (1982).

  32. Zandvoort, A. et al. Smad gene expression in pulmonary fibroblasts: indications for defective ECM repair in COPD. Respir. Res. 9, 83–83 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wei, S., Gao, L., Wu, C., Qin, F. & Yuan, J. Role of the lysyl oxidase family in organ development (Review). Exp. Ther. Med. 20, 163–172 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng, P. T. W. et al. Discovery of an oxcyclohexyl acid lysophosphatidic acid receptor 1 (LPA1) antagonist BMS-986278 for the treatment of pulmonary fibrotic diseases. J. Med. Chem. 64, 15549–15581 (2020).

    Article  Google Scholar 

  35. Suryadevara, V., Ramchandran, R., Kamp, D. W. & Natarajan, V. Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. Int. J. Mol. Sci. 21, 4257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tager, A. M. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. Am. J. Resp. Cell Mol. 47, 563–565 (2012).

    Article  CAS  Google Scholar 

  37. Ninou, I., Magkrioti, C. & Aidinis, V. Autotaxin in pathophysiology and pulmonary fibrosis. Front. Med. 5, 180 (2018).

    Article  Google Scholar 

  38. Gao, L. et al. Autotaxin levels in serum and bronchoalveolar lavage fluid are associated with inflammatory and fibrotic biomarkers and the clinical outcome in patients with acute respiratory distress syndrome. J. Intensive Care 9, 44 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Perrakis, A. & Moolenaar, W. H. Autotaxin: structure-function and signaling. J. Lipid Res. 55, 1010–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark, J. M. et al. Structure-based design of a novel class of autotaxin inhibitors based on endogenous allosteric modulators. J. Med. Chem. 65, 6338–6351 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Geraldo, L. H. M. et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct. Target Ther. 6, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salgado-Polo, F. & Perrakis, A. The structural binding mode of the four autotaxin inhibitor types that differentially affect catalytic and non-catalytic functions. Cancers 11, 1577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Black, K. E. et al. Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. Faseb J. 30, 2435–2450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castelino, F. V. et al. An autotaxin/lysophosphatidic acid/interleukin‐6 amplification loop drives scleroderma fibrosis. Arthritis Rheumatol. 68, 2964–2974 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benesch, M. G. K. et al. Autotaxin is an inflammatory mediator and therapeutic target in thyroid cancer. Endocr.-relat. Cancer 22, 593–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Voloshenyuk, T. G., Fournett, A. C. & Gardner, J. D. PI3K/Akt signaling mediates increased BMP‐1 expression in response to TNF‐α and TGF‐β1 in cardiac fibroblasts. Faseb J. 25, 1032.3 (2011).

    Article  Google Scholar 

  47. Oikonomou, N. et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am. J. Resp. Cell Mol. 47, 566–574 (2012).

    Article  Google Scholar 

  48. Piersigilli, F. & Bhandari, V. Metabolomics of bronchopulmonary dysplasia. Clin. Chim. Acta 500, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Frano, M. R. L. et al. Umbilical cord blood metabolomics reveal distinct signatures of dyslipidemia prior to bronchopulmonary dysplasia and pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 315, L870–L881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Baraldi, E. et al. Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. Plos One 11, e0164211 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carraro, S. et al. Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach. J. Pediatrics 166, 234–239.e1 (2015).

    Article  CAS  Google Scholar 

  52. Wheelock, C. E. et al. Application of ’omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J. 42, 802–825 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Ojala, P. J., Hirvonen, T. E., Hermansson, M., Somerharju, P. & Parkkinen, J. Acyl chain‐dependent effect of lysophosphatidylcholine on human neutrophils. J. Leukoc. Biol. 82, 1501–1509 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Azare, J. et al. Stat3 Mediates Expression of Autotaxin in Breast Cancer. Plos One 6, e27851 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sureshbabu, A. et al. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir. Res 16, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Calthorpe, R. J. et al. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 324, L285–L296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, M. Y. et al. Lysophosphatidic acid induces αvβ6 integrin-mediated TGF-β activation via the LPA2 receptor and the small G protein Gαq. Am. J. Pathol. 174, 1264–1279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nathan, S., Zhang, H., Andreoli, M., Leopold, P. L. & Crystal, R. G. CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts. Respir. Res. 22, 97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, L. S. et al. Lysophosphatidic acid receptor–2 deficiency confers protection against bleomycin-induced lung injury and fibrosis in mice. Am. J. Resp. Cell Mol. 49, 912–922 (2013).

    Article  CAS  Google Scholar 

  60. Igarashi, N. et al. Crosstalk between transforming growth factor β-2 and Autotaxin in trabecular meshwork and different subtypes of glaucoma. J. Biomed. Sci. 48, 47 (2021).

    Article  Google Scholar 

  61. Mizikova, I. & Morty, R. E. The extracellular matrix in bronchopulmonary dysplasia: target and source. Front. Med. 2, 91 (2015).

    Article  Google Scholar 

  62. Funke, M., Zhao, Z., Xu, Y., Chun, J. & Tager, A. M. The lysophosphatidic acid receptor LPA1 promotes epithelial cell apoptosis after lung injury. Am. J. Resp. Cell Mol. 46, 355–364 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Xiaoyun Tang and Dr. David N. Brindley from the University of Alberta for sharing their ATX activity assay protocol, as well as providing valuable technical support. The authors would also like to thank David Fletcher and Dr. Tracey Bonfield from Case Western Reserve University’s Bioanalyte Core for their assistance with the Mouse Luminex Discovery Assay. Lastly, the authors would like to thank University Hospitals Rainbow Babies and Children’s Hospital in Cleveland for providing the lung tissue samples.

Funding

This work was supported in part by #18TPA34230095/American Heart Association and R01HD090887/Eunice Kennedy Shriver National Institute of Child Health and Human Development to A.H.

Author information

Authors and Affiliations

Authors

Contributions

A.W.H., V.N., and A.H. conceived, and designed research; A.W.H, T.S, A.J., C.M., and A.H. performed experiments; A.W.H., P.M.M., V.N., and A.H. analyzed data and interpreted results of experiments; A.W.H. and A.H. drafted manuscript; A.W.H., V.N., and A.H. edited and revised manuscript; All authors read and approved final version of the manuscript.

Corresponding author

Correspondence to Anantha Harijith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, A.W., Sudhadevi, T., Jafri, A. et al. Bronchopulmonary dysplasia demonstrates dysregulated autotaxin/lysophosphatidic acid signaling in a neonatal mouse model. Pediatr Res 97, 2462–2474 (2025). https://doi.org/10.1038/s41390-024-03610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03610-9

Search

Quick links