Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Repetitive daily oxytocin treatment reduces weight gain but not acute neonatal procedural pain

Abstract

Background

While the incidence of neonatal intensive care unit (NICU) admission steadily increases, neonatology lacks evidence of a safe, effective, and preventive analgesic for treating procedural pain. Given its role in nociception and promoting healthy neurodevelopment, the endogenous neuropeptide oxytocin (OT) emerges as a promising candidate.

Methods

This study investigates the use of daily repeated subcutaneous OT (1 mg/kg) treatment in an established model of neonatal repetitive procedural pain and assesses the effectivity of OT treatment on mechanical sensitivity and body weight.

Results

Contrary to our hypothesis repeated daily OT treatment did not prevent the development of mechanical hypersensitivity following needle pricks. Furthermore, treatment with OT diminished body weight gain in neonatal pups, a major side effect observed throughout the neonatal week. These results highlight the unique nature of the maturing nociceptive system that makes the identification and selection of analgesic options for the treatment of acute neonatal procedural pain a major challenge.

Conclusion

In conclusion, our preclinical results do not support the use of repeated OT for acute pain relief in the NICU, and the side effects on body weight gain raise concerns about the use of OT in the NICU.

Impact

  • Repeated daily OT treatment inhibits weight gain in neonatal rat pus.

  • Repetitive daily OT administration does not prevent the development of mechanical hypersensitivity in a model of neonatal procedural pain.

  • Future research must focus on the unique physiology of the developing nociceptive system to establish safe, effective and protective treatment of neonatal procedural pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and timeline.
Fig. 2: Mechanical sensitivity during the neonatal week.
Fig. 3: Effect of daily repeated OT injection on body weight.
Fig. 4: Pups development throughout the neonatal week.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Blencowe, H. et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod. Health 10, 1–14 (2013).

    Article  Google Scholar 

  2. Tielsch J. M. Global incidence of preterm birth. In: Low-Birthweight Baby: Born Too Soon or Too Small. Karger Publishers. 9–15 (2015).

  3. Gamber, R. A., Blonsky, H., Mcdowell, M. & Lakshminrusimha, S. Declining birth rates, increasing maternal age and neonatal intensive care unit admissions. J. Perinatol. 44, 203–208 (2024).

    Article  PubMed  Google Scholar 

  4. Cruz, M. D., Fernandes, A. M. & Oliveira, C. R. Epidemiology of painful procedures performed in neonates: A systematic review of observational studies. Eur. J. Pain. 20, 489–498 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Carbajal, R. et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA 300, 60–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Roofthooft, D. W. E., Simons, S. H. P., Anand, K. J. S., Tibboel, D. & Van Dijk, M. Eight years later, are we still hurting newborn infants? Neonatology 105, 218–226 (2014).

    Article  PubMed  Google Scholar 

  7. Simons, S. H. P. et al. Do we still hurt newborn babies? a prospective study of procedural pain and analgesia in neonates. Arch. Pediatr. Adolesc. Med. 157, 1058–1064 (2003).

    Article  PubMed  Google Scholar 

  8. Claudia, Y. P. A. et al. Painful procedures and analgesia in the NICU: what has changed in the medical perception and practice in a ten-year period? J. Pediatr. 92, 88–95 (2016).

    Article  Google Scholar 

  9. Hartley, C. et al. Analgesic efficacy and safety of morphine in the Procedural Pain in Premature Infants (Poppi) study: Randomised placebo-controlled trial. Lancet 392, 2595 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartley, C. et al. Predicting severity of adverse cardiorespiratory effects of morphine in premature infants: a post hoc analysis of Procedural Pain in Premature Infants trial data. Br. J. Anaesth. 126, 133–154 (2021).

    Article  Google Scholar 

  11. Allegaert, K., Bellieni, C. & Guimarães, H. A critical review on the relevance of paracetamol for procedural pain management in neonates. Front Pediatr. 8, 89 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Squillaro, A. et al. Managing procedural pain in the neonate using an opioid-sparing approach. Clin. Ther. 41, 1701–1713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zwicker, J. G. et al. Smaller cerebellar growth and poorer neurodevelopmental outcomes in very preterm infants exposed to neonatal morphine. J. Pediatr. 172, 81–87.e2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Attarian, S. et al. The neurodevelopmental impact of neonatal morphine administration. Brain Sci. 4, 321–334 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. World Health Organization. Cancer pain relief. Geneva: World Health Organization; (1986).

  16. Carbajal, R. et al. Morphine does not provide adequate analgesia for acute procedural pain among preterm neonates. Pediatrics 115, 1494–1500 (2005).

    Article  PubMed  Google Scholar 

  17. Breton J.-D. et al. Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition. Mol. Pain 4, https://doi.org/10.1186/1744-8069-4-19 (2004).

  18. Millan, M. J. Descending control of pain. Prog. Neurobiol. 66, 355–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Juif, P. E. & Poisbeau, P. Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain 154, 1449–1456 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Poisbeau P., Grinevich V., Charlet A. Oxytocin signaling in pain: cellular, circuit, system, and behavioral levels. Behavioral pharmacology of neuropeptides: oxytocin. 193–211. (2018).

  21. Leonzino, M. et al. The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep. 15, 96–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y.-X., An H., Wen Z., Tao Z.-Y., Cao D.-Y. Can oxytocin inhibit stress-induced hyperalgesia? Neuropeptides 79, 101996 (2019).

  23. Onaka, T. & Takayanagi, Y. The oxytocin system and early‐life experience‐dependent plastic changes. J. Neuroendocrinol. 33, e13049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Godínez-Chaparro B. et al. The potential role of serotonergic mechanisms in the spinal oxytocin-induced antinociception. Neuropeptides 60, 51–60 (2016).

  25. Filippa, M. et al. Pain, parental involvement, and oxytocin in the neonatal intensive care unit. Front Psychol. 10, 715 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Kort, A. R., Joosten, E. A., Patijn, J., Tibboel, D. & van den Hoogen, N. J. Anatomical changes in descending serotonergic projections from the rostral ventromedial medulla to the spinal dorsal horn following repetitive neonatal painful procedures. Int. J. Dev. Neurosci. 82, 361–371 (2022).

    Article  PubMed  Google Scholar 

  27. Filippa, M. et al. Maternal speech decreases pain scores and increases oxytocin levels in preterm infants during painful procedures. Sci. Rep. 11, 17301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anagnostou, E. et al. Intranasal oxytocin in the treatment of autism spectrum disorders: A review of literature and early safety and efficacy data in youth. Brain Res. 1580, 188–198 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Verhees, M. W. F. T. et al. No side-effects of single intranasal oxytocin administration in middle childhood. Psychopharmacology 235, 2471–2477 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Hermesch, A. C., Kernberg, A. S., Layoun, V. R. & Caughey, A. B. Oxytocin: Physiology, pharmacology, and clinical application for labor management. Am. J. Obstet. Gynecol. 230, S729–S7391500 (2024).

  31. de Kort, A. R., Joosten, E. A., Patijn, J., Tibboel, D. & van den Hoogen, N. J. Neonatal procedural pain affects state, but not trait anxiety behavior in adult rats. Dev. Psychobiol. 63, e22210 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Kort, A. R., Joosten, E. A., Patijn, J., Tibboel, D. & van den Hoogen, N. J. Selective targeting of serotonin 5-HT1a and 5-HT3 receptors attenuates acute and long-term hypersensitivity associated with neonatal procedural pain. Front. Pain. Res. 3, 872587 (2022).

    Article  Google Scholar 

  33. van den Hoogen, N. J., Patijn, J., Tibboel, D. & Joosten, E. A. Repetitive noxious stimuli during early development affect acute and long-term mechanical sensitivity in rats. Pediatr. Res. 87, 26–31 (2020).

    Article  PubMed  Google Scholar 

  34. van den Hoogen, N. J., van Reij, R. R. I., Patijn, J., Tibboel, D. & Joosten, E. A. J. Adult spinal opioid receptor μ1 expression after incision is altered by early life repetitive tactile and noxious procedures in rats. Dev. Neurobiol. 78, 417–426 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. van den Hoogen, N. J. et al. Neonatal paracetamol treatment reduces long-term nociceptive behaviour after neonatal procedural pain in rats. Eur. J. Pain. 20, 1309–1318 (2016).

    Article  PubMed  Google Scholar 

  36. Baudat, M., Simons, S. H. P. & Joosten, E. A. J. Repetitive neonatal procedural pain affects stress-induced plasma corticosterone increase in young adult females but not in male rats. Dev Psychobiol. 66, e22478 (2024).

  37. Knaepen, L. et al. Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life. Dev. Neurobiol. 73, 85–97 (2013).

    Article  PubMed  Google Scholar 

  38. Olausson, H., Uvnäs-Moberg, K. & Sohlström, A. Postnatal oxytocin alleviates adverse effects in adult rat offspring caused by maternal malnutrition. Am. J. Physiol. Endocrunol Metab. 284, 475–480 (2003).

    Article  Google Scholar 

  39. Sohlström, A., Olausson, H., Brismar, K. & Uvnäs-Moberg, K. Oxytocin treatment during early life influences reproductive performance in ad libitum fed and food-restricted female rats. Biol. Neonate 81, 132–138 (2002).

    Article  PubMed  Google Scholar 

  40. Holst, S., Uvnäs-Moberg, K. & Petersson, M. Postnatal oxytocin treatment and postnatal stroking of rats reduce blood pressure in adulthood. Autonomic Neurosci.: Basic Clin. 99, 85–90 (2002).

    Article  CAS  Google Scholar 

  41. de Castro, V. L. S. S., Destefani, C. R., Diniz, C. & Poli, P. Evaluation of neurodevelopmental effects on rats exposed prenatally to sulfentrazone. Neurotoxicology 28, 1249–1259 (2007).

    Article  PubMed  Google Scholar 

  42. Rüedi-Bettschen, D. & Platt, D. M. Detrimental effects of self-administered methamphetamine during pregnancy on offspring development in the rat. Drug Alcohol Depend. 177, 171–177 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. van den Hoogen, N. J. et al. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons. Pain 159, 1166–1175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Higashida, H., Oshima, Y. & Yamamoto, Y. Oxytocin transported from the blood across the blood-brain barrier by receptor for advanced glycation end-products (RAGE) affects brain function related to social behavior. Peptides 178, 171230 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto, Y. et al. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun. Biol. 2, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gerasimenko M. et al. Receptor for advanced glycation end-products (RAGE) plays a critical role in retrieval behavior of mother mice at early postpartum. Physiol Behav. 235, 113395 (2021).

  47. Mens, W. B. J., Wtter, A., Van, T. B. & Greidanus, W. Penetration of Neurohypophyseal Hormones from Plasma into Cerebrospinal Fluid (CSF)” Half-Times of Disappearance of These Neuropeptides from CSF. Brain Res. 262, 143–149 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Bakos, J., Lestanova, Z., Strbak, V., Havranek, T. & Bacova, Z. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat. Neuropeptides 48, 281–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Melchior, M. et al. Pharmacological rescue of nociceptive hypersensitivity and oxytocin analgesia impairment in a rat model of neonatal maternal separation. Pain 159, 2630–2640 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Ba X. et al. Three-day continuous oxytocin infusion attenuates thermal and mechanical nociception by rescuing neuronal chloride homeostasis via upregulation KCC2 expression and function. Front Pharmacol. 13, 845018 (2022).

  51. Hathway, G. et al. A postnatal switch in GABAergic control of spinal cutaneous reflexes. Eur. J. Neurosci. 23, 112–118 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kwok, C. H. T., Devonshire, I. M., Bennett, A. J. & Hathway, G. J. Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Pain 155, 168–178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Battell, E. E., Lillywhite, A. & Hathway, G. J. The changing role of descending control of spinal nociception over postnatal development. Curr. Opin. Physiol. 11, 93–96 (2019).

    Article  Google Scholar 

  54. Furukawa, M. et al. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression. Biochem Biophys. Res Commun. 493, 1243–1249 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Hathway, G. J., Vega-Avelaira, D. & Fitzgerald, M. A critical period in the supraspinal control of pain: opioid-dependent changes in brainstem rostroventral medulla function in preadolescence. Pain 153, 775–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morton G. J. et al. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am. J. Physiol. Endocrinol Metab. 302, E134–E144 (2012).

  57. Deblon, N., Veyrat-Durebex, C., Bourgoin, L., Caillon, A. & Bussier, A.-L. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One 6, 25565 (2011).

    Article  Google Scholar 

  58. Maejima Y. et al. Impact of sex, fat distribution and initial body weight on oxytocin’s body weight regulation. Sci Rep. (2017).

  59. Lawson E. A., Olszewski P. K., Weller A., Blevins J. E. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J. Neuroendocrinol. (2020).

  60. Kerem L., Lawson E. A. The effects of oxytocin on appetite regulation, food intake and metabolism in humans. Int. J. Mol. Sci. (2021).

  61. Elabd, C. et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 26, 2399–2407 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Sutton, A. K. et al. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. J. Neurosci. 34, 15306–15318 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Buijs, R. M. The development of vasopressin and oxytocin systems in the brain. Handb. Chem. Neuroanat. 10, 547–571 (1992).

    Google Scholar 

  64. Yamamoto, Y. et al. Neonatal manipulations of oxytocin alter expression of oxytocin and vasopressin immunoreactive cells in the paraventricular nucleus of the hypothalamus in a gender-specific manner. Neuroscience 125, 947–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Reiter M. K. et al. Localization of oxytocin binding sites in the thoracic and upper lumbar spinal cord of the adult and postnatal rat: A histoautoradiographic study. Eur. J. Neurosci. 6: 98–104. (1993).

Download references

Acknowledgements

The completion of this research project would not have been possible without the scientific discussions with colleagues L. Heijmans (Ph.D.), T.J. de Geus (MSc), I. Rudnick-Jansen (Ph.D.), G. Franken (Ph.D.). Contribution from D. Mulder-Jongen and D. Hermes, and members of the animal facility was also essential in the completion of this research. The authors have no conflict of interest to declare. Funding was provided by internal research support based on grants from Erasmus-Sophia Children’s Hospital Rotterdam, the Netherlands (to S. H.P. Simons) and Maastricht University, Maastricht, the Netherlands (to E.A.J. Joosten). All animal experiments were performed in accordance with the European Directive for Protection of Vertebrate Animal Use for Experimental and Other Scientific Purposes (86/609/EEC) and were approved by the Committee for Experiments on Animals, Maastricht, The Netherlands (DEC 2017-017).

Author information

Authors and Affiliations

Authors

Contributions

All authors substantially contributed to the conception and design of the experiment, interpreted the data and critically revised the manuscript. Acquisition of data and drafting of the article was performed by M. Baudat. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Mathilde Baudat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudat, M., Joosten, E.A.J. & Simons, S.H.P. Repetitive daily oxytocin treatment reduces weight gain but not acute neonatal procedural pain. Pediatr Res 98, 294–300 (2025). https://doi.org/10.1038/s41390-024-03680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41390-024-03680-9

Search

Quick links