Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Neuroprotective effects of vitamin C on hypoxic-ischemic brain injury in neonatal mice

Abstract

Background

Hypoxic ischemia (HI) is one of the common causes of neonatal brain injury, leading to neurodevelopmental disorders such as cerebral palsy, epilepsy, and cognitive deficits. In this study, we evaluated neuroprotective effects of vitamin C on the neonatal HI brain injury mouse model.

Methods

Brain damage measurement, sensorimotor function in the neonatal period, learning and memory ability in adulthood were carried out in mice treated with vitamin C daily for 7 consecutive days following HI brain injury at postnatal day 7.

Results

Vitamin C treatment significantly reduced the hippocampus damage area, infarction volume, hippocampal neuron loss, and suppressed the neuroinflammation after HI injury. Additionally, it improved performance on neonatal sensorimotor function tests and learning and memory ability in adulthood.

Conclusions

Vitamin C reduced brain injury and improved functional recovery in the neonatal hypoxic ischemia brain damage (HIBD) model.

Impact

  • Vitamin C treatment significantly reduced neuron loss and suppressed the neuroinflammation after hypoxic-ischemic brain injury.

  • Vitamin C treatment enhanced sensorimotor functions in neonates and improved cognitive abilities in adults after hypoxic-ischemic brain injury.

  • Vitamin C could be an attractive candidate drug in clinical trials of hypoxic-ischemic encephalopathy therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Vitamin C treatment reduced the hippocampus loss and infraction area in HI injury mice.
Fig. 3: Vitamin C treatment reduced the hippocampus neuron loss, neurogenesis and suppressed neuroinflammation in HI injury mice.
Fig. 4: Vitamin C promoted neuronal recovery after HI injury in neonatal period.
Fig. 5: Effects of vitamin C on the motor function, learning and memory ability deficits after HI injury in adulthood.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Douglas-Escobar, M. & Weiss, M. D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 169, 397–403 (2015).

    Article  PubMed  Google Scholar 

  2. Lee, B. L. & Glass, H. C. Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy. Clin. Exp. Pediatr. 64, 608–618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jacobs, S., Hunt, R., Tarnow-Mordi, W., Inder, T. & Davis, P. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, Cd003311 (2007).

  4. Parikh, P. & Juul, S. E. Neuroprotective strategies in neonatal brain injury. J. Pediatr. 192, 22–32 (2018).

    Article  PubMed  Google Scholar 

  5. Zheng, H., Xu, Y., Liehn, E. A. & Rusu, M. Vitamin C as scavenger of reactive oxygen species during healing after myocardial infarction. Int. J. Mol. Sci. 25, 3114(2024).

  6. Hansen, S. N., Tveden-Nyborg, P. & Lykkesfeldt, J. Does vitamin C deficiency affect cognitive development and function? Nutrients 6, 3818–3846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flashman, E., Davies, S. L., Yeoh, K. K. & Schofield, C. J. Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting hif and prolyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem. J. 427, 135–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Tveden-Nyborg, P. et al. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am. J. Clin. Nutr. 90, 540–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Rice, M. E. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Tveden-Nyborg, P. & Lykkesfeldt, J. Does vitamin C deficiency increase lifestyle-associated vascular disease progression? Evidence based on experimental and clinical studies. Antioxid. Redox Signal 19, 2084–2104 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Bowman, G. L. Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors 38, 114–122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harrison, F. E. & May, J. M. Vitamin C function in the brain: vital role of the ascorbate transporter Svct2. Free Radic. Biol. Med. 46, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moretti, M., Fraga, D. B. & Rodrigues, A. L. S. Ascorbic acid to manage psychiatric disorders. CNS Drugs 31, 571–583 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Shah, S. A., Yoon, G. H., Kim, H. O. & Kim, M. O. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain. Neurochem. Res. 40, 875–884 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Levine, M. et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl Acad. Sci. USA 93, 3704–3709 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lykkesfeldt, J. & Poulsen, H. E. Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br. J. Nutr. 103, 1251–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Yanase, F. et al. Harm of IV high-dose vitamin C therapy in adult patients: a scoping review. Crit. Care Med. 48, e620–e628 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Vega Franco, L. Development of the digestive system. medico-dietetic implications in infants. Rev. Investig. Clin. 45, 605–612 (1993).

    CAS  Google Scholar 

  19. Indrio, F. et al. Development of the gastrointestinal tract in newborns as a challenge for an appropriate nutrition: a narrative review. Nutrients 14, 1405 (2022).

  20. Smith, A. L., Alexander, M., Rosenkrantz, T. S., Sadek, M. L. & Fitch, R. H. Sex differences in behavioral outcome following neonatal hypoxia ischemia: insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp. Neurol. 254, 54–67 (2014).

    Article  PubMed  Google Scholar 

  21. Albertsson, A. M. et al. The immune response after hypoxia-ischemia in a mouse model of preterm brain injury. J. Neuroinflam. 11, 153 (2014).

    Article  Google Scholar 

  22. Ji, X. et al. Functional reconstruction of the basal ganglia neural circuit by human striatal neurons in hypoxic-ischaemic injured brain. Brain 146, 612–628 (2023).

    Article  PubMed  Google Scholar 

  23. Fischer, A. H., Jacobson, K. A., Rose, J. & Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008, pdb.prot4986 (2008).

    PubMed  Google Scholar 

  24. Zhang, Q. et al. Tlr3 deletion inhibits programmed necrosis of brain cells in neonatal mice with sevoflurane-induced cognitive dysfunction. Aging 14, 4714–4727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sampath, D. et al. Effects of a potassium channel opener on brain injury and neurologic outcomes in an animal model of neonatal hypoxic-ischemic injury. Pediatr. Res. 88, 202–208 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feather-Schussler, D. N. & Ferguson, T. S. A battery of motor tests in a neonatal mouse model of cerebral Palsy. J. Vis. Exp. 53569 (2016).

  27. Yokoi, F., Dang, M. T., Zhou, T. & Li, Y. Abnormal nuclear envelopes in the striatum and motor deficits in Dyt11 myoclonus-dystonia mouse models. Hum. Mol. Genet. 21, 916–925 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, P. et al. HESC-derived olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury. Nat. Commun. 4, 2196 (2013).

    Article  PubMed  Google Scholar 

  29. Kocot, J., Luchowska-Kocot, D., Kiełczykowska, M., Musik, I. & Kurzepa, J. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients 9, 659(2017).

  30. Yan, M. et al. High-dose ascorbic acid administration improves functional recovery in rats with spinal cord contusion injury. Spinal Cord. 52, 803–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Morris-Blanco, K. C. et al. High-dose vitamin C prevents secondary brain damage after stroke via epigenetic reprogramming of neuroprotective genes. Transl. Stroke Res. 13, 1017–1036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spoelstra-de Man, A. M. E., Elbers, P. W. G. & Oudemans-van Straaten, H. M. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Crit. Care 22, 70 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan, J., Lipinski, M. & Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Gonçalves, J. T., Schafer, S. T. & Gage, F. H. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167, 897–914 (2016).

    Article  PubMed  Google Scholar 

  35. Rehman, S. U., Shah, S. A., Ali, T., Chung, J. I. & Kim, M. O. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol. 54, 255–271 (2017).

    Article  PubMed  Google Scholar 

  36. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang, Y. & Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Modrell, A. K. & Tadi, P. in StatPearls (StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC., 2024).

  39. Chen, J. et al. A Myt1l syndrome mouse model recapitulates patient phenotypes and reveals altered brain development due to disrupted neuronal maturation. Neuron 109, 3775–3792.e3714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campos, F. L. et al. Rodent models of Parkinson’s disease: beyond the motor symptomatology. Front. Behav. Neurosci. 7, 175 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vorhees, C. V. & Williams, M. T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1, 848–858 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lőrincz, T., Holczer, M., Kapuy, O. & Szarka, A. The interrelationship of pharmacologic ascorbate induced cell death and ferroptosis. Pathol. Oncol. Res 25, 669–679 (2019).

    Article  PubMed  Google Scholar 

  43. de Sales, K. P. F. et al. Effects of vitamin C on the prevention of ischemia-reperfusion brain injury: experimental study in rats. Int J. Vasc. Med. 2019, 4090549 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Chang, C. Y., Chen, J. Y., Wu, M. H. & Hu, M. L. Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood brain barrier and cerebral neuronal apoptosis. Free Radic. Biol. Med. 155, 29–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, J. L., Huang, Y. H., Shen, Y. C., Huang, H. C. & Liu, P. H. Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J. Cereb. Blood Flow. Metab. 30, 1121–1136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong, J. Y., Davaa, G., Yoo, H., Hong, K. & Hyun, J. K. Ascorbic acid promotes functional restoration after spinal cord injury partly by epigenetic modulation. Cells 9, 1310 (2020).

  47. Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. Faseb J. 22, 659–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Bass, W. T., Malati, N., Castle, M. C. & White, L. E. Evidence for the safety of ascorbic acid administration to the premature infant. Am. J. Perinatol. 15, 133–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Farooqi, I. S. & Xu, Y. Translational potential of mouse models of human metabolic disease. Cell 187, 4129–4143 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Lembo, C., Buonocore, G. & Perrone, S. Oxidative stress in preterm newborns. Antioxidants 10, 1672 (2021).

  51. Nakajima, A., Ueda, Y., Sameshima, H. & Ikenoue, T. Intracerebral antioxidant ability of mature rats after neonatal hypoxic-ischemic brain injury estimated using the microdialysis-electron spin resonance method. J. Obstet. Gynaecol. Res. 41, 884–889 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Montaldo, P., Pauliah, S. S., Lally, P. J., Olson, L. & Thayyil, S. Cooling in a low-resource environment: lost in translation. Semin Fetal Neonatal Med. 20, 72–79 (2015).

    Article  PubMed  Google Scholar 

  53. Gunn, A. J. et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr. Res. 81, 202–209 (2017).

    Article  PubMed  Google Scholar 

  54. Favrais, G. et al. Systemic inflammation disrupts the developmental program of white matter. Ann. Neurol. 70, 550–565 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Leviton, A. & Gressens, P. Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci. 30, 473–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Tóth, S. Z., Lőrincz, T. & Szarka, A. Concentration does matter: the beneficial and potentially harmful effects of ascorbate in humans and plants. Antioxid. Redox Signal 29, 1516–1533 (2018).

    Article  PubMed  Google Scholar 

  57. Liu, D., Pei, D., Hu, H., Gu, G. & Cui, W. Effects and mechanisms of vitamin C post-conditioning on platelet activation after hypoxia/reoxygenation. Transfus. Med. Hemother. 47, 110–118 (2020).

    Article  PubMed  Google Scholar 

  58. Guaiquil, V. H., Golde, D. W., Beckles, D. L., Mascareno, E. J. & Siddiqui, M. A. Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radic. Biol. Med 37, 1419–1429 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Kaźmierczak-Barańska, J., Boguszewska, K., Adamus-Grabicka, A. & Karwowski, B. T. Two faces of vitamin C-antioxidative and pro-oxidative agent. Nutrients 12, 1501 (2020).

  60. Kawashima, A. et al. Vitamin C induces the reduction of oxidative stress and paradoxically stimulates the apoptotic gene expression in extravillous trophoblasts derived from first-trimester tissue. Reprod. Sci. 22, 783–790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Di Tano, M. et al. Synergistic effect of fasting-mimicking diet and vitamin C against Kras mutated cancers. Nat. Commun. 11, 2332 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhou, J. et al. Vitamin C promotes apoptosis and cell cycle arrest in oral squamous cell carcinoma. Front. Oncol. 10, 976 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abbah, J. et al. Oxidative stress-induced damage to the developing hippocampus is mediated by Gsk3β. J. Neurosci. 42, 4812–4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cutuli, D. et al. Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice. Alzheimers Res. Ther. 12, 150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sahay, A. & Hen, R. Hippocampal neurogenesis and depression. Novartis Found. Symp. 289, 152–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. O’Donnell, P. & Grace, A. A. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci. 15, 3622–3639 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pikkarainen, M., Rönkkö, S., Savander, V., Insausti, R. & Pitkänen, A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J. Comp. Neurol. 403, 229–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Bird, C. M. & Burgess, N. The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 9, 182–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Rao, Y. L. et al. Hippocampus and its involvement in Alzheimer’s disease: a review. 3 Biotech. 12, 55 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gray, J. A. A theory of anxiety: the role of the limbic system. Encephale 9, 161b–166b (1983).

    CAS  PubMed  Google Scholar 

  71. Kheirbek, M. A. et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77, 955–968 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jimenez, J. C. et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97, 670–683.e676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Padilla-Coreano, N. et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89, 857–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mirza, M. A., Ritzel, R., Xu, Y., McCullough, L. D. & Liu, F. Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J. Neuroinflam. 12, 32 (2015).

    Article  Google Scholar 

  75. Kelly, L. A., Branagan, A., Semova, G. & Molloy, E. J. Sex differences in neonatal brain injury and inflammation. Front. Immunol. 14, 1243364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayes, B. C. et al. A case-control study of hypoxic-ischemic encephalopathy in newborn infants at >36 weeks gestation. Am. J. Obstet. Gynecol. 209, 29.e21–29.e19 (2013).

    Article  Google Scholar 

  77. Chalak, L. F., Pruszynski, J. E. & Spong, C. Y. Sex vulnerabilities to hypoxia-ischemia at birth. JAMA Netw. Open 6, e2326542 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund for Less Developed Regions of the National Natural Science Foundation of China (No. 82260316) to B.Z.

Author information

Authors and Affiliations

Authors

Contributions

Kaiyi Liu and Xiaoqing Chen contributed equally to this work. Yifeng Lin and Wenhao Zhou designed the study and supervised the experiments; Kaiyi Liu and Xiaoqing Chen carried out most of the experiments, analyzed results, and wrote the manuscript; Fangbing Chen, Wenjuan Dai, Shiyi Zheng and Bi Ze helped with some experiments. All authors revised the original manuscript and agreed on its contents.

Corresponding authors

Correspondence to Wenhao Zhou or Yifeng Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Chen, X., Chen, F. et al. Neuroprotective effects of vitamin C on hypoxic-ischemic brain injury in neonatal mice. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-03926-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-03926-0

Search

Quick links