Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Renal dysplasia development and chronic kidney disease

Abstract

Renal dysplasia is a common congenital birth defect in childhood, caused by fetal genetic defects, epigenetic modification disorders, or environmental factors. Maternal malnutrition, placental insufficiency, and exposure to harmful substances such as alcohol, angiotensin-converting enzyme inhibitors, and cocaine during pregnancy increase the risk of fetal renal dysplasia. The pathogenesis of this disease involves abnormal formation of renal units, leading to structural and functional abnormalities of the kidney. If left untreated, renal dysplasia can progress to chronic kidney disease (CKD) in children. This review explores the etiology and pathogenesis of renal dysplasia, emphasizing the intrinsic link between renal dysplasia and CKD through various pathological pathways. Additionally, we propose potential therapeutic agents targeting these mechanisms. We also highlight future research directions to further understand and address this issue. We hope this review will deepen clinicians’ understanding of renal dysplasia and promote further laboratory research in this area.

Impact

  1. 1.

    This review comprehensively summarizes and elucidates the complex relationship between renal dysplasia and chronic kidney disease (CKD) based on previous research, offering new directions for related studies.

  1. 2.

    It expands upon conservative treatment approaches for renal dysplasia, providing more clinical options for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Weber, S. et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE Study. J Am Soc Nephrol 17, 2864–2870 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Jelin, A. Renal agenesis. Am J Obstet Gynecol 225, B28–B30, https://www.ajog.org/article/S0002-9378(21)00681-5/fulltext (2021).

    Article  PubMed  Google Scholar 

  3. Woolf, A. S., Price, K. L., Scambler, P. J. & Winyard, P. J. D. Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15, 998–1007 (2004).

    Article  PubMed  Google Scholar 

  4. Zhong, C. et al. Analysis of etiology and complications in children with stage 5 chronic kidney disease. PubMed 61, 1109–1117 (2023).

    CAS  Google Scholar 

  5. Isert, S., Müller, D. & Thumfart, J. Factors associated with the development of chronic kidney disease in children with congenital anomalies of the kidney and urinary tract. Front Pediatr 8, 298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Devel Cell 18, 698–712, https://www.sciencedirect.com/science/article/pii/S1534580710002078 (2010).

    Article  CAS  Google Scholar 

  7. Short, K. M. & Smyth, I. M. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol 12, 754–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi, M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 12, 361–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Sánchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73, https://www.nature.com/articles/382070a0.pdf (1996).

    Article  PubMed  Google Scholar 

  10. Wang, H. et al. Disruption of Gen1 causes congenital anomalies of the kidney and Urinary Tract in Mice. Int J Biol Sci 14, 10–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Favor, J. et al. The Mouse Pax2(1Neu) Mutation Is Identical to a Human PAX2 Mutation in a Family with renal-coloboma Syndrome and Results in Developmental Defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci 93, 13870–13875 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wanner, N. et al. DNA methyltransferase 1 controls nephron progenitor cell renewal and differentiation. J Am Soc Nephrol 30, 63–78 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang, F. et al. Targeted disruption of the histone lysine 79 methyltransferase dot1l in nephron progenitors causes congenital renal dysplasia. Epigenetics 16, 1235–1250, https://pubmed.ncbi.nlm.nih.gov/33315499/ (2021).

    Article  PubMed  Google Scholar 

  15. Marrone, A. K. & Ho, J. MicroRNAs: Potential regulators of renal development genes that contribute to CAKUT. Pediatr Nephrol 29, 565–574 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Pontual, Loïc et al. Germline deletion of the miR-1792 cluster causes skeletal and growth defects in humans. Nat Genet 43, 1026–1030 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-1792 Family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu, Y., Thomson, J. M., Wong, H. Y. F., Hammond, S. M. & Hogan, B. L. M. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310, 442–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, V. et al. miR-1792 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci 110, 10765–10770 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giglio, S. R., Contini, E., Toni, S. & Pela, I. Growth hormone therapy-related hyperglycaemia in a boy with renal cystic hypodysplasia and a new mutation of the HNF1 Gene. Nephrol Dial Transpl 25, 3116–3119 (2010).

    Article  CAS  Google Scholar 

  21. Liu, H. The roles of histone deacetylases in kidney development and disease. Clin Exp Nephrol 25, 215–223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, S. et al. Histone deacetylase 1 and 2 Regulate Wnt and p53 pathways in the ureteric bud epithelium. Development 142, 1180–1192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hilliard, S. et al. Defining the dynamic chromatin landscape of mouse nephron progenitors. Biol Open 8, bio042754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brodbeck, S., Besenbeck, B. & Englert, C. The transcription factor Six2 activates expression of the GDNF gene as well as its own promoter. Mech Dev 121, 1211–1222 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Mañalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58, 770–773 (2000).

    Article  PubMed  Google Scholar 

  26. Gray, S. P., Denton, K. M., Cullen-McEwen, L., Bertram, J. F. & Moritz, K. M. Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 21, 1891–1902, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014004/ (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goodyer, P. et al. Effects of maternal vitamin a status on kidney development: a pilot study. Pediatr Nephrol 22, 209–214 (2007).

    Article  PubMed  Google Scholar 

  28. Lelièvre-Pégorier, M. et al. Mild vitamin a deficiency leads to inborn nephron deficit in the rat. Kidney Int 54, 1455–1462 (1998).

    Article  PubMed  Google Scholar 

  29. Chevalier, R. L. Mechanisms of fetal and neonatal renal impairment by pharmacologic inhibition of angiotensin. Curr Med Chem 19, 4572–4580 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Battin, M., Albersheim, S. & Newman, D. Congenital genitourinary tract abnormalities following cocaine exposure in utero. Am J Perinatol 12, 425–428 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Gawlinski, D., Gawlinska, K., Frankowska, M. & Filip, M. Cocaine and Its abstinence condition modulate striatal and hippocampal Wnt signaling in a male rat model of drug self-administration. Int J Mol Sci 23, 14011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kohl, S. et al. Definition, diagnosis and clinical management of non-obstructive Kidney dysplasia: a Consensus Statement by the ERKNet working group on kidney malformations. Nephrol Dial Transpl 37, 2351–2362 (2022).

    Article  Google Scholar 

  33. Szabo, A. J. et al. Nephron number determines susceptibility to renal mass reduction-induced ckd in lewis and fisher 344 rats: implications for development of experimentally induced chronic allograft nephropathy. Nephrol Dial Transpl 23, 2492–2495 (2008).

    Article  Google Scholar 

  34. Chen, R.-Y. & Chang, H. Renal dysplasia. Arch Pathol Lab Med 139, 547–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Gimpel, C. et al. Perinatal diagnosis, management, and follow-up of cystic renal diseases. JAMA Pediatrics 74, 172 (2018). https://www.erknet.org/fileadmin/files/user_upload/2018-Gimpel-CPR-CysticDiseases-JAMA_Peds.pdf.

    Google Scholar 

  36. Baek, M. et al. Urodynamic and histological changes in a sterile rabbit vesicoureteral reflux model. J Korean Med Sci 25, 1352–1352, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923783/#B6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nath, K. A., Croatt, A. J. & Hostetter, T. H. Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol Ren Physiol 258, F1354–F1362 (1990).

    Article  CAS  Google Scholar 

  38. Layton, A. T., Edwards, A. & Vallon, V. Adaptive Changes in GFR, Tubular morphology, and Transport in Subtotal Nephrectomized kidneys: modeling and analysis. Am J Physiol Ren Physiol 313, F199–F209 (2017).

    Article  CAS  Google Scholar 

  39. Lane, N. The vital question: energy, evolution, and the origins of complex life. Choice Rev. 53:53–219853–2198 (2015).

  40. Margulis, L. Genetic and evolutionary consequences of symbiosis. Exp Parasitol 39, 277–349 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. Rodríguez‐Peña, A. et al. Up‐regulation of endoglin, a TGF‐β‐binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nephrol Dial Transpl 16, 34–39 (2001).

    Article  Google Scholar 

  42. Prieto, M. et al. Effect of the long-term treatment with trandolapril on endoglin expression in rats with experimental renal fibrosis induced by renal mass reduction. Kidney Blood Press Res 28, 32–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Johnson, M. Brenner & rector’s the kidney. Can J Surg 39, 515–516 (1996).

    PubMed Central  Google Scholar 

  44. Tapia, E. et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine 20, 359–366 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Sinuani, I. et al. Mesangial cells initiate compensatory renal tubular hypertrophy via IL-10-induced TGF-β secretion: effect of the immunomodulator AS101 on this process. Am J Physiol Ren Physiol 291, F384–F394 (2006).

    Article  CAS  Google Scholar 

  46. Hauser, P. et al. Transcriptional response in the unaffected kidney after contralateral hydronephrosis or nephrectomy. Kidney Int 68, 2497–2507 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Hayslett, J. P., Kashgarian, M. & Epstein, F. H. Functional correlates of compensatory renal hypertrophy. J Clin Investig 47, 774–782 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feraille, E. & Dizin, E. Coordinated control of ENaC and Na+,K+-ATPase in renal collecting duct. J Am Soc Nephrol 27, 2554–2563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aparicio-Trejo, O. E. et al. Curcumin prevents mitochondrial dynamics disturbances in Early 5/6 nephrectomy: relation to oxidative stress and mitochondrial bioenergetics. BioFactors 43, 293–310 (2016).

    Article  PubMed  Google Scholar 

  50. Fedorova, LV, et al. Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach. BMC Nephrol. 14, 209 (2013).

  51. Hwang, S. et al. Hypertrophy of renal mitochondria. J Am Soc Nephrol 1, 822 (1990). https://journals.lww.com/jasn/abstract/1990/11000/hypertrophy_of_renal_mitochondria_.7.aspx.

    Article  CAS  PubMed  Google Scholar 

  52. Kume, S. et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. J Am Soc Nephrol 18, 2715–2723 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Szeto, H. H. et al. Protection of mitochondria prevents high-fat diet–induced glomerulopathy and proximal tubular injury. Kidney Int 90, 997–1011 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Lash, L. H., Putt, D. A., Horky, S. J. & Zalups, R. K. Functional and toxicological characteristics of isolated renal mitochondria: impact of compensatory renal growth. Biochem Pharmacol 62, 383–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Benipal, B. & Lash, L. H. Influence of renal compensatory hypertrophy on mitochondrial energetics and redox status. Biochem Pharmacol 81, 295–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Aparicio-Trejo, O. E., Tapia, E., Sánchez-Lozada, L. G. & Pedraza-Chaverri, J. Mitochondrial bioenergetics, redox state, dynamics and turnover alterations in renal mass reduction models of chronic kidney diseases and their possible implications in the progression of this illness. Pharmacol Res 135, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. De Rechter, S. et al. Autophagy in renal diseases. Pediatr Nephrol 31, 737–752 (2015).

    Article  PubMed  Google Scholar 

  58. Parzych, K. R. & Klionsky, D. J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20, 460–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song, Y. et al. Activation of autophagy contributes to the renoprotective effect of postconditioning on acute kidney injury and renal fibrosis. Biochem Biophys Res Commun 504, 641–646 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Leventhal, J. S., Wyatt, C. M. & Ross, M. J. Recycling to discover something new: the role of autophagy in kidney disease. Kidney Int 91, 4–6 (2017).

    Article  PubMed  Google Scholar 

  61. Chiang, C. K, et al. Involvement of endoplasmic reticulum stress, autophagy and apoptosis in advanced glycation end products-induced glomerular mesangial cell injury. Sci Rep. 6, (2016). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035926/.

  62. Hou, X. et al. Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR Pathway. Cardiovasc Diabetol 13, 78–78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. He, L., Livingston, M. J. & Dong, Z. Autophagy in acute kidney injury and repair. Nephron Clin Pract 127, 56–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Ravichandran, K. & Edelstein, C. L. Polycystic kidney disease: a case of suppressed autophagy? Semin Nephrol 34, 27–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 19, 488–493, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944011/ (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 15, 705–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J Clin Investig 124, 2299–2306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wright, E. J. et al. Chronic unilateral ureteral obstruction is associated with interstitial fibrosis and tubular expression of transforming growth factor-beta. PubMed 74, 528–537 (1996).

    CAS  Google Scholar 

  69. Faraj, A. H. & Morley, A. R. Remnant kidney pathology after five-sixth nephrectomy in Rat. Acta Pathol Microbiol 100, 1097–1105 (1992).

    CAS  Google Scholar 

  70. Shimojo, H. Adaptation and distortion of podocytes in rat remnant kidney. Pathol Int 48, 368–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Muchaneta-Kubara, E. C. & el Nahas, A. M. Myofibroblast phenotypes expression in experimental renal scarring. Nephrol Dial Transpl 12, 904–915 (1997).

    Article  CAS  Google Scholar 

  72. Boor, P., Ostendorf, T. & Jürgen, Floege PDGF and the progression of renal disease. Nephrol Dial Transpl 29, i45–i54 (2014).

    Article  CAS  Google Scholar 

  73. Loeffler, I. & Wolf, G. Transforming growth factor and the progression of renal disease. Nephrol Dial Transpl 29, i37–i45 (2013).

    Article  Google Scholar 

  74. Li, A, et al. Angiotensin II induces connective tissue growth factor expression in human hepatic stellate cells by a transforming growth factor β-independent mechanism. Sci Rep. 7, 7841 (2017).

  75. Kagami, S., Border, W. A., Miller, D. E. & Noble, N. A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Investig 93, 2431–2437 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith, EC, Tan, SJ, Holt, SG, Hewitson, TD. FGF23 Is synthesised locally by renal tubules and activates injury-primed fibroblasts. Sci Rep. 7, 3345 (2017).

  77. Smith, E. C., Holt, S. G. & Hewitson, T. D. FGF23 Activates injury-primed Renal Fibroblasts via FGFR4-dependent Signalling and Enhancement of TGF-β Autoinduction. Int J Biochem Cell Biol 92, 63–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Abdelrazik, E., Hassan, H. M., Abdallah, Z., Magdy, A. & Farrag, E. A. Renoprotective effect of N-acetylcystein and Vitamin E in Bisphenol A-induced Rat nephrotoxicity; Modulators of Nrf2/ NF-κB and ROS signaling pathway. Acta Bio-Med Atenei Parm 93, e2022301 (2022). https://pubmed.ncbi.nlm.nih.gov/36533744/.

  79. Jiang, Y. J. et al. Coenzyme Q10 Attenuates Renal Fibrosis by Inhibiting RIP1-RIP3-MLKL-mediated Necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction. Int Immunopharmacol 108, 108868–108868 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Park, C. H. & Yoo, T.-H. TGF-β Inhibitors for therapeutic management of kidney fibrosis. Pharmaceuticals 15, 1485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kohn, D. B., Chen, Y. Y. & Spencer, M. J. Successes and challenges in clinical gene therapy. Gene Ther 30, 1–9 (2023).

    Article  Google Scholar 

  82. Peek, J. L. & Wilson, M. H. Cell and gene therapy for kidney disease. Nat Rev Nephrol 7, 1–12, https://www.nature.com/articles/s41581-023-00702-3 (2023).

    Google Scholar 

  83. Gupta, J. et al. Genome-wide association studies in pediatric chronic kidney disease. Pediatr Nephrol 31, 1241–1252 (2016).

    Article  PubMed  Google Scholar 

  84. Mischak, H., Delles, C., Vlahou, A. & Vanholder, R. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 11, 221–232 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Hanna, M. H. & Brophy, P. D. Metabolomics in pediatric nephrology: emerging concepts. Pediatr Nephrol 30, 881–887 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hanna, M. H. et al. The nephrologist of tomorrow: towards a kidney-omic future. Pediatr Nephrol 32, 393–404 (2016).

    Article  PubMed  Google Scholar 

  87. Beckerman, P., Ko, Y.-A. & Susztak, K. Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transpl 29, 1821–1827 (2014).

    Article  CAS  Google Scholar 

  88. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272, https://pubmed.ncbi.nlm.nih.gov/23727169/ (2013).

    Article  PubMed  Google Scholar 

  89. Nelson, R. G. et al. Development of risk prediction equations for incident chronic kidney disease. JAMA 322, 2104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Skinner, M. A., Safford, S. D., Reeves, J. G., Jackson, M. E. & Freemerman, A. J. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82, 344–351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. El-Ghoneimi, A. et al. Glial cell line derived neurotrophic factor is expressed by epithelia of human renal dysplasia. J Urol 168, 2624–2628 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Igarashi, P., Shao, X., Mcnally, B. T. & Hiesberger, T. Roles of HNF-1β in kidney development and congenital cystic diseases. Kidney Int 68, 1944–1947 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Lokmane, L., Heliot, C., Garcia-Villalba, P., Fabre, M. & Cereghini, S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development 137, 347–357 (2009).

    Article  Google Scholar 

  94. Xu, P.-X. Six1 Is required for the early organogenesis of mammalian kidney. Development 130, 3085–3094 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ruf, R. G. et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1–SIX1–DNA complexes. Proc Natl Acad Sci USA 101, 8090–8095, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC419562/ (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chia, I. et al. Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by aGata3-Raldh2-Retmolecular network in mice. Development 138, 2089–2097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Belge, H. et al. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome. Nephrol Dialysis Transpl 32, 830–837 (2016).

    Google Scholar 

  98. Brodbeck, S. & Englert, C. Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol 19, 249–255 (2004).

    Article  PubMed  Google Scholar 

  99. Chen, A. et al. Otological manifestations in branchiootorenal spectrum disorder: a systematic review and meta-analysis. Clin Genet 100, 3–13, https://pubmed.ncbi.nlm.nih.gov/33624842/ (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Unzaki, A. et al. Clinically diverse phenotypes and genotypes of patients with branchio-oto-renal syndrome. J Hum Genet 63, 647–656, https://pubmed.ncbi.nlm.nih.gov/29500469/ (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Kiefer, S. M. et al. Sall1-dependent Signals Affect Wnt signaling and ureter tip fate to initiate kidney development. Development 137, 3099–3106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kohlhase, J. SALL1 Mutations in townes-brocks syndrome and related disorders. Hum Mutat 16, 460–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Pulkkinen, K., Murugan, S. & Vainio, S. Wnt Signaling in Kidney Development and Disease. Organogenesis 4, 55–59 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Herzlinger, D., Qiao, J., Cohen, D., Ramakrishna, N. & Brown, A. M. C. Induction of kidney epithelial morphogenesis by cells expressing Wnt-1. Dev Biol 166, 815–818 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Davies, J. A. & Fisher, C. E. Genes and proteins in renal development. Nephron Exp Nephrol 10, 102–113 (2002).

    Article  CAS  Google Scholar 

  106. Zhang, Q, et al. Roles and action mechanisms of WNT4 in Cell Differentiation and Human diseases: a review. Cell Death Discovery. 7, 287 (2021).

  107. Majumdar, A. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Saleem, A. A. & Siddiqui, S. N. Fraser syndrome. PubMed 25, S124–S126 (2015).

    Google Scholar 

  109. Petrou, P., Makrygiannis, A. K. & Chalepakis, G. The Fras1/Frem family of extracellular matrix proteins: structure, function, and association with Fraser syndrome and the MouseblebPhenotype. Connect Tissue Res 49, 277–282 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Kiyozumi, D., Sugimoto, N. & Sekiguchi, K. Breakdown of the Reciprocal Stabilization of QBRICK/Frem1, Fras1, and Frem2 at the Basement Membrane Provokes Fraser syndrome-like Defects. Proc Natl Acad Sci 103, 11981–11986, https://www.pnas.org/content/103/32/11981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, Z., Dai, X., Jiang, G. & Lin, F. ASH2L controls ureteric bud morphogenesis through the regulation of RET/GFRA1 signaling activity in a mouse model. J Am Soc Nephrol 34, 988–1002 (2023).

    PubMed  PubMed Central  Google Scholar 

  112. Wu, G. & Somlo, S. Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol Genet Metab 69, 1–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Lanktree, M. B., Haghighi, A., di Bari, I., Song, X. & Pei, Y. Insights into autosomal dominant polycystic kidney disease from genetic studies. Clin J Am Soc Nephrol 16, CJN.02320220 (2020).

    Google Scholar 

  114. Harris, P. C. Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens 11, 309–314 (2002).

    Article  PubMed  Google Scholar 

  115. Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet 393, 919–935 (2019).

    Article  PubMed  Google Scholar 

  116. Kim, I. et al. Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19, 455–468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Idowu, J. et al. Aberrant regulation of Notch3 signaling pathway in polycystic kidney disease. Sci Rep. 8, 3340 https://www.nature.com/articles/s41598-018-21132-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the CQMU Program for Youth Innovation in Future Medicine (W0056) and the Chongqing Science and Health Joint TCM Technology Innovation and Application Development Project (2020ZY023877).

Author information

Authors and Affiliations

Authors

Contributions

Li Zhang: researching the literature; writing of the draft manuscript. Chunjiang Yang: discussions of the article content. Yuanyuan Zhang: substantial editing of the draft manuscript. Xing Liu: discussions of the article content. Dawei He: discussions of the article content. Tao Lin: discussions of the article content. Guanghui Wei: discussions of the article content. Deying Zhang: discussions of the article content; substantial editing of the draft manuscript; reviewing of the draft manuscript.

Corresponding author

Correspondence to Deying Zhang.

Ethics declarations

Competing interests

All authors certify that they have no financial and/or personal relationship with any person or organization that could have inappropriately influenced their work. The authors declare no conflicts of interest.

Consent statement

This review article does not involve any new studies with human participants or animals performed by any of the authors. All data cited in this review are from published studies, and appropriate consent statements are available in the original publications.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, C., Liu, X. et al. Renal dysplasia development and chronic kidney disease. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-03950-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-03950-0

Search

Quick links