Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Integrated metabolomics and proteomics analysis in children with cerebral palsy exposed to botulinum toxin-A

Abstract

Background

We previously examined plasma metabolic changes before and after botulinum toxin-A injections of cerebral palsy (CP) children and showed that the glycine, serine and threonine metabolism may play a key role in neuritogenesis. This study analysed untargeted metabolomics combined with proteomics of plasma to discussed which substances are meaningfully changed, to what extent they affect the effects of action.

Methods

Blood samples were collected from 91 children with spastic CP at 4 time points: pre-injection (T1), 1 month post-injection (T2), 3 months post-injection (T3) and 6 months post-injection (T4). Differentially changed metabolites and proteins were selected, and co-expression pathways were constructed to explore the key molecular processes.

Results

A total of 674 proteins and 354 metabolites were identified. The differential metabolites were mainly involved in the linoleic acid metabolism, beta−Alanine metabolism, citrate cycle, pyruvate metabolism and glycolysis or gluconeogenesis. Differential proteins were primarily associated with glucose metabolism, lipid metabolism, immune and inflammation responses. Co-expression pathways showed that ECM-receptor interaction, complement and coagulation cascades, glycolysis or gluconeogenesis, pyruvate metabolism, and linoleic acid metabolism were the main pathways.

Conslusions

Our results indicated the botulinum toxin-A predominantly activated the glucose metabolism, lipid metabolism, and immune and inflammation responses, and energy metabolism changed significantly in this process.

Trial registration details

ChiCTR2000033800, Research on the mechanism of botulinum toxin relieving spasticity in children with cerebral palsy. Approval No. 202023041. Registered 13 June 2020, http://www.chictr.org.cn/showproj.html?proj=52267.

Impact statement

  • This is the first study that combined dynamic metabolomics and proteomics analysis to investigate the molecular changes in children with spastic cerebral palsy after botulinum toxin-A injections, which might provide a theoretical reference for the further subsequent study for targets to increase the efficacy and prolong the duration of botulinum toxin-A, and would be a valuable resource for the metabolomics and proteomics field in this group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principal component analysis and orthogonal partial least squares-discriminant analysis of different time points.
Fig. 2: Comprehensive metabolomics analysis of plasma samples from different time points.
Fig. 3: Interaction network for differentially expressed proteins.
Fig. 4: Proteomic profile shift of plasma samples from different time points.
Fig. 5: Integrated pathway analysis of differential metabolites and proteins.

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

References

  1. Koman, L. A., Smith, B. P. & Shilt, J. S. Cerebral palsy. Lancet 363, 1619–1631 (2004).

    Article  PubMed  Google Scholar 

  2. Li, N. et al. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 145, 119–141 (2022).

    Article  PubMed  Google Scholar 

  3. Gulati, S. & Sondhi, V. Cerebral palsy: an overview. Indian J. Pediatr. 85, 1006–1016 (2018).

    Article  PubMed  Google Scholar 

  4. Yeargin-Allsopp, M. et al. Prevalence of cerebral palsy in 8-year-old children in three areas of the united states in 2002: a multisite collaboration. Pediatrics 121, 547–554 (2008).

    Article  PubMed  Google Scholar 

  5. Howard, J. et al. Cerebral palsy in victoria: motor types, topography and gross motor function. J. Paediatr. Child Health 41, 479–483 (2005).

    Article  PubMed  Google Scholar 

  6. Kaya Keles, C. S. & Ates, F. Botulinum toxin intervention in cerebral palsy-induced spasticity management: projected and contradictory effects on skeletal muscles. Toxins 14, 772 (2022).

  7. Novak, I. et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev. Med. Child Neurol. 55, 885–910 (2013).

    Article  PubMed  Google Scholar 

  8. Aktaş, E. & Ömeroğlu, H. Botulinum toxin type a injection increases range of motion in hip, knee and ankle joint contractures of children with cerebral palsy. Eklem Hastalik Cerrahisi 30, 155–162 (2019).

    Article  PubMed  Google Scholar 

  9. Xu, K., Yan, T. & Mai, J. A randomized controlled trial to compare two botulinum toxin injection techniques on the functional improvement of the leg of children with cerebral palsy. Clin. Rehabil. 23, 800–811 (2009).

    Article  Google Scholar 

  10. Blasi, J. et al. Botulinum neurotoxin a selectively cleaves the synaptic protein snap-25. Nature 365, 160–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Multani, I., Manji, J., Hastings-Ison, T., Khot, A. & Graham, K. Botulinum toxin in the management of children with cerebral palsy. Paediatr. Drugs 21, 261–281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lawrence, G. W., Ovsepian, S. V., Wang, J., Aoki, K. R. & Dolly, J. O. Therapeutic effectiveness of botulinum neurotoxin a: potent blockade of autonomic transmission by targeted cleavage of only the pertinent snap-25. Neuropharmacology 70, 287–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Tang, H. et al. Plasma metabolomic changes in children with cerebral palsy exposed to botulinum neurotoxin. J. Proteome Res. 21, 671–682 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Dar, M. A. et al. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief. Funct. Genom. 22, 76–96 (2023).

    Article  CAS  Google Scholar 

  15. Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D. & McLean, J. A. Untargeted metabolomics strategies-challenges and emerging directions. J. Am. Soc. Mass Spectrom. 27, 1897–1905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alpay Savasan, Z. et al. Metabolomic profiling of cerebral palsy brain tissue reveals novel central biomarkers and biochemical pathways associated with the disease: a pilot study. Metabolites 9, 27 (2019).

  17. Rifai, N., Gillette, M. A. & Carr, S. A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24, 971–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X. K. et al. Tnap-a potential cytokine in the cerebral inflammation in spastic cerebral palsy. Front. Mol. Neurosci. 15, 926791 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, N. et al. Proteomic changes in rat gastrocnemius muscle after botulinum toxin a injection. Ann. Rehabil. Med. 37, 157–166 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Welham, N. V., Marriott, G., Tateya, I. & Bless, D. M. Proteomic changes in rat thyroarytenoid muscle induced by botulinum neurotoxin injection. Proteomics 8, 1933–1944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nasb, M. et al. Comparison of the effects of modified constraint-induced movement therapy and intensive conventional therapy with a botulinum-a toxin injection on upper limb motor function recovery in patients with stroke. Libyan J. Med. 14, 1609304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mauritz, K. H. Gait training in hemiplegia. Eur. J. Neurol. 9(Suppl 1), 23–29 (2002). dicussion 53-61.

    Article  PubMed  Google Scholar 

  24. Cavill, R., Jennen, D., Kleinjans, J. & Briedé, J. J. Transcriptomic and metabolomic data integration. Brief. Bioinform. 17, 891–901 (2016).

    Article  PubMed  Google Scholar 

  25. Garcia, A. & Barbas, C. Gas chromatography-mass spectrometry (Gc-Ms)-based metabolomics. Methods Mol. Biol. 708, 191–204 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T. & Fukusaki, E. Gc/Ms based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (Simca). BMC Bioinforma. 12, 131 (2011).

    Article  CAS  Google Scholar 

  27. Kind, T. et al. Fiehnlib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. David, C. C. & Jacobs, D. J. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol. Biol. 1084, 193–226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz-Perez, D., Guan, H., Madhivanan, P., Mathee, K. & Narasimhan, G. So you think you can pls-Da?. BMC Bioinforma. 21, 2 (2020).

    Article  Google Scholar 

  30. Götz, S. et al. High-throughput functional annotation and data mining with the blast2go Suite. Nucleic Acids Res. 36, 3420–3435 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanehisa, M. & Goto, S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. Kegg as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Van Egeren, L. F. Multivariate statistical analysis. Psychophysiology 10, 517–532 (1973).

    Article  PubMed  Google Scholar 

  35. Meseguer-Henarejos, A. B., Sánchez-Meca, J., López-Pina, J. A. & Carles-Hernández, R. Inter- and intra-rater reliability of the modified ashworth scale: a systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 54, 576–590 (2018).

    Article  PubMed  Google Scholar 

  36. Carr, W. W., Jain, N. & Sublett, J. W. Immunogenicity of botulinum toxin formulations: potential therapeutic implications. Adv. Ther. 38, 5046–5064 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frevert, J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type a products. Drugs R. D. 15, 1–9 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, J. et al. Adverse events after different forms of botulinum neurotoxin a injections in children with cerebral palsy: an 8-year retrospective study. Dev. Med. Child Neurol. 65, 86–93 (2023).

    Article  PubMed  Google Scholar 

  39. Panicker, J. N. & Muthane, U. B. Botulinum toxins: pharmacology and its current therapeutic evidence for Use. Neurol. India 51, 455–460 (2003).

    CAS  PubMed  Google Scholar 

  40. Leach, M. W. et al. Immunogenicity/hypersensitivity of biologics. Toxicol. Pathol. 42, 293–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Nevin, A. N., Nguyen, K., Atresh, S., Vivanti, A. & Hickman, I. J. Effective management of spasticity and impacts on weight change and resting energy expenditure in a female with spinal cord injury: a case report. Spinal Cord. Ser. Cases 3, 17057 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Balaban, B., Tok, F., Tan, A. K. & Matthews, D. J. Botulinum toxin a treatment in children with cerebral palsy: its effects on walking and energy expenditure. Am. J. Phys. Med. Rehabil. 91, 53–64 (2012).

    Article  PubMed  Google Scholar 

  43. Edgar, T. S. Clinical utility of botulinum toxin in the treatment of cerebral palsy: comprehensive review. J. Child Neurol. 16, 37–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Dressler, D., Adib Saberi, F. & Rosales, R. L. Botulinum toxin therapy of dystonia. J. Neural Transm.128, 531–537 (2021).

    Article  PubMed  Google Scholar 

  45. de Paiva, A., Meunier, F. A., Molgó, J., Aoki, K. R. & Dolly, J. O. Functional repair of motor endplates after botulinum neurotoxin type a poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl. Acad. Sci. USA 96, 3200–3205 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yin, G. N. et al. Establishment of in vitro model of erectile dysfunction for the study of high-glucose-induced angiopathy and neuropathy. Andrology 5, 327–335 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Goyal, M. S., Hawrylycz, M., Miller, J. A., Snyder, A. Z. & Raichle, M. E. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab. 19, 49–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  49. Goodyear, L. J. & Kahn, B. B. Exercise, glucose transport, and insulin sensitivity. Annu. Rev. Med. 49, 235–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Pedersen, B. K. & Hoffman-Goetz, L. Exercise and the immune system: regulation, integration, and adaptation. Physiol. Rev. 80, 1055–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Scheffer, D. D. L. & Latini, A. Exercise-induced immune system response: anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Simpson, R. J., Kunz, H., Agha, N. & Graff, R. Exercise and the regulation of immune functions. Prog. Mol. Biol. Transl. Sci. 135, 355–380 (2015).

    Article  PubMed  Google Scholar 

  53. Loescher, C. M., Hobbach, A. J. & Linke, W. A. Titin (Ttn): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res. 118, 2903–2918 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Legerlotz, K., Matthews, K. G., McMahon, C. D. & Smith, H. K. Botulinum toxin-induced paralysis leads to slower myosin heavy chain isoform composition and reduced titin content in juvenile rat gastrocnemius muscle. Muscle Nerve 39, 472–479 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Velders, M. et al. Effect of botulinum toxin a-induced paralysis and exercise training on mechanosensing and signalling gene expression in juvenile rat gastrocnemius muscle. Exp. Physiol. 93, 1273–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Lieber, R. L., Roberts, T. J., Blemker, S. S., Lee, S. S. M. & Herzog, W. Skeletal muscle mechanics, energetics and plasticity. J. Neuroeng. Rehabil. 14, 108 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heidings, J. B., Demosthene, B., Merlino, T. R., Castaneda, N. & Kang, E. H. Gelsolin-mediated actin filament severing in crowded environments. Biochem. Biophys. Res. Commun. 532, 548–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Miller, W. L. Tenascin-X-discovery and early research. Front. Immunol. 11, 612497 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the extraordinary generosity of the study participants and the support from their caregivers. And we would like to thank Dr. Luo Jie for polishing the language of the article. The study was funded by the Featured Clinical Technique of Guangzhou (2023C-TS59), Guangzhou Municipal Science and Technology Project (2024A03J01274, 2023A03J0919), and Plan on enhancing scientific research in Guangzhou Medical University (GMUCR2024-02020).

Author information

Authors and Affiliations

Authors

Contributions

K.S.X. contributed to conception and design, and final approval of the version to be published; Z.F.C. and T.T.P.a. wrote this manuscript and performed data analysis; M.R.Z., Y.G.Z. and H.R.N. carried acquisition of data; X.B.Y., Y.Z., T.T.P.b., Q.F.H., H.Y.Z., L.R.L. and M.S.H. carried out sample collection and revised the paper. H.M.T., L.H. and J.L.L. participated in participants recruitment.

Corresponding author

Correspondence to Kaishou Xu.

Ethics declarations

Competing interests

The authors declared no competing interests.

Ethics statement

This study was approved by the Health Research Ethics Committee of Guangzhou Women and Children’s Medical Centre (Approval No. 202023041). Informed consent was obtained from all participants in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Peng, T., Zhong, M. et al. Integrated metabolomics and proteomics analysis in children with cerebral palsy exposed to botulinum toxin-A. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04038-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04038-5

Search

Quick links