Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Environmental and genetic risk factors for preterm birth: interplays with stressful events during pregnancy

Abstract

Background

Preterm birth (PTB) etiology remains poorly understood. Our aim was to investigate the relation of environmental factors and specific gene polymorphisms involved in PTB in the context of stressful life events during pregnancy.

Methods

Parental sociodemographic and obstetric data as well as genetic variants of 1263 preterm newborns were analyzed. Logistic regressions were used to identify shared environmental and genetic risk factors for PTB and stressful life events. A Lasso Ridge logistic regression with cross-validation was used to select the best predictors of maternal stress. Associations were evidenced through Bayesian networks.

Results

Starting from a great number of variables, our model was processed and reduced until it allowed to visualize only two environmental factors (alcohol intake and chronic hypertension) along with three SNPs rs66911171 (CR1), rs854552 (PON1), rs4966038 (IGF1R) and two interactions rs854552 x rs4966038 (PON1xIGFR1) and rs5742612 x rs1942386 (IGF1xPGR) related to PTB and maternal stress.

Conclusion

Machine learning techniques allow us to identify two environmental factors, three genetic markers, and two interactions related to PTB in the context of stressful life events. Findings of this exploratory study contribute to the understanding of the complex pathways relating maternal stress and PTB.

Impact

  • An analysis of environmental factors and preterm birth specific gene polymorphisms in the context of stressful life events during pregnancy is presented.

  • Alcohol intake and chronic hypertension along with SNPs of CR1, PON1, IGF1R and two interactions PON1xIGFR1 and IGF1xPGR are shown as related to preterm birth in the context of stressful life events.

  • This research could help in developing targeted interventions and preventive strategies for at-risk populations.

  • The study emphasizes the potential of machine learning to interpret biological and social interactions affecting health outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bayesian network showing associations among genetic markers, environmental factors, and maternal stress.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Christian, L. M. Physiological reactivity to psychological stress in human pregnancy: Current knowledge and future directions. Prog. Neurobiol. 99, 106–116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lobel, M., DeVincent, C. J., Kaminer, A. & Meyer, B. A. The impact of prenatal maternal stress and optimistic disposition on birth outcomes in medically high-risk women. Health Psychol. 19, 544–553 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. Staneva, A., Bogossian, F., Pritchard, M. & Wittkowski, A. The effects of maternal depression, anxiety, and perceived stress during pregnancy on preterm birth: A systematic review. Women Birth 28, 179–193 (2015).

    Article  PubMed  Google Scholar 

  4. Wadhwa, P. D., Entringer, S., Buss, C. & Lu, M. C. The contribution of maternal stress to preterm birth: issues and considerations. Clin. Perinatol. 38, 351–384 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bream, E. N. A. et al. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth. Pediatr. Res 73, 135–141 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Mann, P. C. et al. Polymorphisms in the fetal progesterone receptor and a calcium-activated potassium channel isoform are associated with preterm birth in an Argentinian population. J. Perinatol. 33, 336–340 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. Ryckman, K. K. et al. Maternal and fetal genetic associations of PTGER3 and PON1 with preterm birth. PLoS One 5, e9040 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Romero, R. et al. Identification of fetal and maternal single nucleotide polymorphisms in candidate genes that predispose to spontaneous preterm labor with intact membranes. Am. J. Obstet. Gynecol. 202, 431.e1–34 (2010).

    Article  PubMed  Google Scholar 

  9. Romero, R. et al. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM). Am. J. Obstet. Gynecol. 203, 361.e1–361.e30 (2010).

    Article  PubMed  Google Scholar 

  10. Strauss, J. F. et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am. J. Obstet. Gynecol. 218, 294–314.e2 (2018).

    Article  PubMed  Google Scholar 

  11. Krupitzki, H. B. et al. Environmental risk factors and perinatal outcomes in preterm newborns, according to family recurrence of prematurity. Am. J. Perinatol. 30, 451–461 (2013).

    PubMed  Google Scholar 

  12. Gimenez, L. G. et al. Maternal and neonatal epidemiological features in clinical subtypes of preterm birth. J. Matern Fetal Neonatal Med 29, 3153–3161 (2016).

    Article  PubMed  Google Scholar 

  13. Gimenez, L. G. et al. Association of candidate gene polymorphisms with clinical subtypes of preterm birth in a Latin American population. Pediatr. Res 82, 554–559 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Elias, D. et al. Preterm birth and genitourinary tract infections: assessing gene-environment interaction. Pediatr. Res 90, 678–683 (2021).

    Article  PubMed  Google Scholar 

  15. Elias, D. et al. Preterm birth etiological pathways: a Bayesian networks and mediation analysis approach. Pediatr. Res 91, 1882–1889 (2022).

    Article  PubMed  Google Scholar 

  16. Elias, D. E. et al. Genes, exposures, and interactions on preterm birth risk: an exploratory study in an Argentine population. J. Community Genet 13, 557–565 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dunkel-Schetter, C. & Glynn, L. Stress in pregnancy: empirical evidence and theoretical issues to guide interdisciplinary researchers. In Handbook of Stress Science (Contrada, R., Baum. A., eds) 321–343 (Springer, New York: 2011).

  18. Glynn, L. M., Schetter, C. D., Hobel, C. J. & Sandman, C. A. Pattern of perceived stress and anxiety in pregnancy predicts preterm birth. Health Psychol. 27, 43–51 (2008).

    Article  PubMed  Google Scholar 

  19. Pearce, B. D. et al. Interrelationship of cytokines, hypothalamic-pituitary-adrenal axis hormones, and psychosocial variables in the prediction of preterm birth. Gynecol. Obstet. Invest 70, 40–46 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zietlow, A.-L., Nonnenmacher, N., Reck, C., Ditzen, B. & Müller, M. Emotional Stress During Pregnancy - Associations With Maternal Anxiety Disorders, Infant Cortisol Reactivity, and Mother-Child Interaction at Pre-school Age. Front Psychol. 10, 2179 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alfaro, E. L., Dipierri, J. E., Gutiérrez, N. I. & Vullo, C. M. Genetic structure and admixture in urban populations of the Argentine North-West. Ann. Hum. Biol. 32, 724–737 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Khashan, A. S. et al. Rates of preterm birth following antenatal maternal exposure to severe life events: a population-based cohort study. Hum. Reprod. 24, 429–437 (2009).

    Article  PubMed  CAS  Google Scholar 

  23. Castilla, E. E. & Orioli, I. M. ECLAMC: the Latin-American collaborative study of congenital malformations. Community Genet 7, 76–94 (2004).

    PubMed  Google Scholar 

  24. Manetti, G. et al. Continuous quality improvement through use of perinatal clinical record and AGUSTINA database. Stud. Health Technol. Inf. 52, 824–826 (1998).

    Google Scholar 

  25. Wang, J. et al. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays. BMC Genomics 10, 561 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Esper, L. H. & Furtado, E. F. Stressful life events and alcohol consumption in pregnant women: A cross-sectional survey. Midwifery 71, 27–32 (2019).

    Article  PubMed  Google Scholar 

  27. Morgan, N., Christensen, K., Skedros, G., Kim, S. & Schliep, K. Life stressors, hypertensive disorders of pregnancy, and preterm birth. J. Psychosom. Obstet. Gynaecol. 43, 42–50 (2022).

    Article  PubMed  Google Scholar 

  28. Christian, L. M. & Porter, K. Longitudinal changes in serum proinflammatory markers across pregnancy and postpartum: effects of maternal body mass index. Cytokine 70, 134–140 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gillespie, S. L., Porter, K. & Christian, L. M. Adaptation of the inflammatory immune response across pregnancy and postpartum in Black and White women. J. Reprod. Immunol. 114, 27–31 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mead, E. C. et al. The Role of Genetics in Preterm Birth. Reprod. Sci. 30, 3410–3427 (2023).

    Article  PubMed  Google Scholar 

  31. Di Renzo, G. C., Tosto, V. & Giardina, I. The biological basis and prevention of preterm birth. Best. Pr. Res Clin. Obstet. Gynaecol. 52, 13–22 (2018).

    Article  Google Scholar 

  32. Kullo, I. J. et al. Complement Receptor 1 Gene Variants Are Associated with Erythrocyte Sedimentation Rate. Am. J. Hum. Genet. 89, 131–138 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Soto, E. et al. Anaphylatoxins in preterm and term labor. J. Perinat. Med 33, 306–313 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Vaisbuch, E. et al. Activation of the alternative pathway of complement is a feature of preterm parturition but not of spontaneous labor at term. Am. J. Reprod. Immunol. 63, 318–330 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jiang, C. et al. Longitudinal changes of oxidative stress and PON1 lactonase activity and status in older pregnant women undergoing assisted reproductive technology: a prospective nested case-control study. Reprod. Biol. Endocrinol. 21, 97 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Byrns, M. C. Regulation of progesterone signaling during pregnancy: implications for the use of progestins for the prevention of preterm birth. J. Steroid Biochem Mol. Biol. 139, 173–181 (2014).

    Article  PubMed  CAS  Google Scholar 

  37. Wetendorf, M. & DeMayo, F. J. Progesterone receptor signaling in the initiation of pregnancy and preservation of a healthy uterus. Int J. Dev. Biol. 58, 95–106 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yellon, S. M. et al. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth. PLoS One 8, e81340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Du, S., Trakooljul, N., Schoen, J. & Chen, S. Does Maternal Stress Affect the Early Embryonic Microenvironment? Impact of Long-Term Cortisol Stimulation on the Oviduct Epithelium. Int J. Mol. Sci. 21, 443 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sferruzzi-Perri, A. N. et al. Early pregnancy maternal endocrine insulin-like growth factor I programs the placenta for increased functional capacity throughout gestation. Endocrinology 148, 4362–4370 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Demendi, C. et al. Gene expression patterns of insulin-like growth factor 1, 2 (IGF-1, IGF-2) and insulin-like growth factor binding protein 3 (IGFBP-3) in human placenta from preterm deliveries: influence of additional factors. Eur. J. Obstet. Gynecol. Reprod. Biol. 160, 40–44 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Lo, H. C. et al. Relation of cord serum levels of growth hormone, insulin-like growth factors, insulin-like growth factor binding proteins, leptin, and interleukin-6 with birth weight, birth length, and head circumference in term and preterm neonates. Nutrition 18, 604–608 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Nwachukwu, C. U., Robinson, R. S. & Woad, K. J. Effect of insulin-like growth factor system on luteinising angiogenesis. Reprod. Fertil. 4, e220057 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mazziotti, G. & Giustina, A. Glucocorticoids and the regulation of growth hormone secretion. Nat. Rev. Endocrinol. 9, 265–276 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Mackness, M. I., Arrol, S., Abbott, C. & Durrington, P. N. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 104, 129–135 (1993).

    Article  PubMed  CAS  Google Scholar 

  46. Mackness, M. I., Mackness, B., Durrington, P. N., Connelly, P. W. & Hegele, R. A. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr. Opin. Lipido. 7, 69–76 (1996).

    Article  CAS  Google Scholar 

  47. Chen, D. et al. Polymorphisms of the paraoxonase gene and risk of preterm delivery. Epidemiology 15, 466–470 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the health care team at Maternidad Nuestra Señora de la Merced, Tucumán, Argentina, for their hard work and support and to Mariana Piola and Alejandra Mariona at ECLAMC who provided technical support.

Funding

The research program was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-MINCyT), grant numbers PICT-2018-4275 (PI: López Camelo JS) and PICT-2018-4285 (PI: Lucas G. Gimenez), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and INAGEMP [Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)] grant 465549/2014-4, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

S.L.H., M.R.S., J.S.L.C., and L.G.G. made substantial contributions to design, acquisition of data, analysis and interpretation of data, drafting the article and approving the final manuscript as submitted. H.K., S.M.M., M.L.R., G.L., J.S.L.C., and L.G.G. made substantial contributions to design, acquisition of data, critical manuscript revision for important intellectual content, and approving of the final version as submitted. S.L.H., M.R.S., M.N.M., H.K., S.M.M., M.L.R., G.L., J.S.L.C., and L.G.G. made contributions to data analysis and interpretation, drafting and editing of the article, and approved the final manuscript as submitted.

Corresponding author

Correspondence to Lucas G. Gimenez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Before enrollment, signed informed consent was obtained from all participating families. Parents provided consent for themselves and for the neonates.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heisecke, S.L., Santos, M.R., Malbrán, M.N. et al. Environmental and genetic risk factors for preterm birth: interplays with stressful events during pregnancy. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04047-4

Search

Quick links