Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroprognostication in neonatal encephalopathy due to presumed hypoxic-ischemic encephalopathy

Abstract

Over the last two decades, significant progress has been made in the management of neonatal encephalopathy due to presumed hypoxic-ischemic encephalopathy. One key area that requires improvement is timely and accurate neuroprognostication in this population to identify infants who may benefit from early interventions and harness the maximum neuroplastic capacity of the developing brain. Improved neuroprognostication also has the potential to foster more effective communication of findings to caregivers. In this review, we explore whether improved neuroprognostication is possible by assessing clinical, biochemical, electrographic, neurophysiological, and neuroimaging biomarkers and their role in neuroprognostication.

Impact statement

  • Over the last two decades, significant progress has been made in the management of neonatal encephalopathy due to presumed hypoxic-ischemic encephalopathy. One key area that requires improvement is timely and accurate neuroprognostication in this population to identify infants who may benefit from early interventions and harness the maximum neuroplastic capacity of the developing brain.

  • In this review article, we discuss general concepts and principles of neuroprognostication and the role of each prognostic marker.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Post-rewarming brain MRI of a neonate presenting with hypoxic-ischemic encephalopathy.
Fig. 2: Post-rewarming brain MRI of a neonate with hypoxic-ischemic encephalopathy.
Fig. 3: Post-rewarming brain MRI of a neonate presenting with hypoxic-ischemic encephalopathy.
Fig. 4: Diffusion-weighted brain MR images of neonates with hypoxic-ischemic encephalopathy.

Similar content being viewed by others

References

  1. Branagan, A., Molloy, E. J., Badawi, N. & Nelson, K. B. Causes and terminology in neonatal encephalopathy: what is in a name? Neonatal encephalopathy, hypoxic-ischemic encephalopathy or perinatal asphyxia. Clin. Perinatol. 51, 521–534 (2024).

    Article  PubMed  Google Scholar 

  2. Collaborators, G. B. D. S. R. F. Global, regional, and national burden of stroke and its risk factors, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 23, 973–1003 (2024).

    Article  Google Scholar 

  3. Gunn, A. J. & Thoresen, M. Neonatal encephalopathy and hypoxic-ischemic encephalopathy. Handb. Clin. Neurol. 162, 217–237 (2019).

    Article  PubMed  Google Scholar 

  4. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, CD003311 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Douglas-Escobar, M. & Weiss, M. D. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 169, 397–403 (2015).

    Article  PubMed  Google Scholar 

  6. Steinman, K. J. et al. Neonatal watershed brain injury on magnetic resonance imaging correlates with verbal IQ at 4 years. Pediatrics 123, 1025–1030 (2009).

    Article  PubMed  Google Scholar 

  7. Lee-Kelland, R. et al. School-age outcomes of children without cerebral palsy cooled for neonatal hypoxic-ischaemic encephalopathy in 2008-2010. Arch. Dis. Child Fetal Neonatal Ed. 105, 8–13 (2020).

    Article  PubMed  Google Scholar 

  8. Robertsson Grossmann, K., Eriksson Westblad, M., Blennow, M. & Lindstrom, K. Outcome at early school age and adolescence after hypothermia-treated hypoxic-ischaemic encephalopathy: an observational, population-based study. Arch. Dis. Child Fetal Neonatal Ed. 108, 295–301 (2023).

    Article  PubMed  Google Scholar 

  9. Lee, K. S. et al. Practice variations for therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy: an international survey. J. Pediatr. 274, 114181 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Beltempo, M. et al. Variations in practices and outcomes of neonates with hypoxic ischemic encephalopathy treated with therapeutic hypothermia across tertiary nicus in Canada. J. Perinatol. 42, 898–906 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Cawley, P. & Chakkarapani, E. Fifteen-minute consultation: therapeutic hypothermia for infants with hypoxic ischaemic encephalopathy-translating jargon, prognosis and uncertainty for parents. Arch. Dis. Child Educ. Pr. Ed. 105, 75–83 (2020).

    Article  Google Scholar 

  12. Christensen, R., de Vries, L. S. & Cizmeci, M. N. Neuroimaging to guide neuroprognostication in the neonatal intensive care unit. Curr. Opin. Pediatr. 36, 190–197 (2024).

    Article  PubMed  Google Scholar 

  13. Goswami, I., Guillot, M. & Tam, E. W. Y. Predictors of long-term neurodevelopmental outcome of hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Semin Neurol. 40, 322–334 (2020).

    Article  PubMed  Google Scholar 

  14. Einspieler, C. et al. Cerebral palsy: early markers of clinical phenotype and functional outcome. J. Clin. Med. 8, 1–27 (2019).

  15. Romeo, D. M. et al. Hammersmith infant neurological examination in infants born at term: predicting outcomes other than cerebral palsy. Dev. Med. Child Neurol. 64, 871–880 (2022).

    Article  PubMed  Google Scholar 

  16. Christensen, R., Miller, S. P. & Gomaa, N. A. Home-ICS: how experiences of the home impact biology and child neurodevelopmental outcomes. Pediatr. Res. 96, 1475–1483 (2024).

  17. Merchant, N. & Azzopardi, D. Early predictors of outcome in infants treated with hypothermia for hypoxic-ischaemic encephalopathy. Dev. Med. Child Neurol. 57 (Suppl 3), 8–16 (2015).

    Article  PubMed  Google Scholar 

  18. Bonifacio, S. L. & Hutson, S. The term newborn: evaluation for hypoxic-ischemic encephalopathy. Clin. Perinatol. 48, 681–695 (2021).

    Article  PubMed  Google Scholar 

  19. Glass, H. C. et al. Predictors of death or severe impairment in neonates with hypoxic-ischemic encephalopathy. JAMA Netw. Open 7, e2449188 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laptook, A. R. et al. Outcome of term infants using Apgar scores at 10 min following hypoxic-ischemic encephalopathy. Pediatrics 124, 1619–1626 (2009).

    Article  PubMed  Google Scholar 

  21. Natarajan, G. et al. Apgar scores at 10 min and outcomes at 6-7 years following hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 98, F473–F479 (2013).

    Article  PubMed  Google Scholar 

  22. Kasdorf, E., Laptook, A., Azzopardi, D., Jacobs, S. & Perlman, J. M. Improving infant outcome with a 10 min Apgar of 0. Arch. Dis. Child Fetal Neonatal Ed. 100, F102–F105 (2015).

    Article  PubMed  Google Scholar 

  23. Shibasaki, J. et al. Outcomes related to 10-min Apgar scores of zero in Japan. Arch. Dis. Child Fetal Neonatal Ed. 105, 64–68 (2020).

    Article  PubMed  Google Scholar 

  24. Shah, P., Anvekar, A., McMichael, J. & Rao, S. Outcomes of infants with Apgar score of zero at 10 min: the West Australian Experience. Arch. Dis. Child Fetal Neonatal Ed. 100, F492–F494 (2015).

    Article  PubMed  Google Scholar 

  25. Natarajan, G. et al. Prediction of 18 to 22 month neurodevelopmental outcomes using the numerical Sarnat score compared with modified Sarnat staging in infants with moderate to severe hypoxic-ischemic encephalopathy. J. Pediatr. 281, 114522 (2025).

  26. Gunn, A. J. et al. Therapeutic hypothermia changes the prognostic value of clinical evaluation of neonatal encephalopathy. J. Pediatr. 152, 55–58.e51 (2008).

    Article  PubMed  Google Scholar 

  27. Rutherford, M. et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol. 9, 39–45 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shankaran, S. et al. Evolution of encephalopathy during whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. J. Pediatr. 160, 567–572.e563 (2012).

    Article  PubMed  Google Scholar 

  29. Lally, P. J. et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol. 18, 35–45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Al Balushi, A. et al. Hypotension and brain injury in asphyxiated newborns treated with hypothermia. Am. J. Perinatol. 35, 31–38 (2018).

    Article  PubMed  Google Scholar 

  31. More, K. S. et al. Cardiovascular associations with abnormal brain magnetic resonance imaging in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia and rewarming. Am. J. Perinatol. 35, 979–989 (2018).

    Article  PubMed  Google Scholar 

  32. Agarwal, P. et al. Outcomes of infants with hypoxic ischemic encephalopathy and persistent pulmonary hypertension of the newborn: results from three NICHD studies. J. Perinatol. 41, 502–511 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pappas, A. et al. Hypocarbia and adverse outcome in neonatal hypoxic-ischemic encephalopathy. J. Pediatr. 158, 752–758.e751 (2011).

    Article  PubMed  Google Scholar 

  34. Beken, S. et al. Can biochemical markers predict the severity of hypoxic-ischemic encephalopathy? Turk. J. Pediatr. 56, 62–68 (2014).

    PubMed  Google Scholar 

  35. Murray, D. M. et al. Persistent lactic acidosis in neonatal hypoxic-ischaemic encephalopathy correlates with EEG grade and electrographic seizure burden. Arch. Dis. Child Fetal Neonatal Ed. 93, F183–F186 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Michniewicz, B. et al. Biomarkers in newborns with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Childs Nerv. Syst. 36, 2981–2988 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kamino, D. et al. Severity and duration of dysglycemia and brain injury among patients with neonatal encephalopathy. EClinicalMedicine 58, 101914 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Basu, S. K. et al. Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the coolcap study. Arch. Dis. Child Fetal Neonatal Ed. 101, F149–F155 (2016).

    Article  PubMed  Google Scholar 

  39. Lagace, M. & Tam, E. W. Y. Neonatal dysglycemia: a review of dysglycemia in relation to brain health and neurodevelopmental outcomes. Pediatr. Res. 96, 1429–1437 (2024).

    Article  PubMed  Google Scholar 

  40. Graham, E. M., Burd, I., Everett, A. D. & Northington, F. J. Blood biomarkers for evaluation of perinatal encephalopathy. Front. Pharmacol. 7, 196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Graham, E. M., Everett, A. D., Delpech, J. C. & Northington, F. J. Blood biomarkers for evaluation of perinatal encephalopathy: state of the art. Curr. Opin. Pediatr. 30, 199–203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Del Rio et al. Amplitude integrated electroencephalogram as a prognostic tool in neonates with hypoxic-ischemic encephalopathy: a systematic review. PLoS ONE 11, e0165744 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chandrasekaran, M., Chaban, B., Montaldo, P. & Thayyil, S. Predictive value of amplitude-integrated EEG (AEEG) after rescue hypothermic neuroprotection for hypoxic ischemic encephalopathy: a meta-analysis. J. Perinatol. 37, 684–689 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Thoresen, M., Hellstrom-Westas, L., Liu, X. & de Vries, L. S. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 126, e131–e139 (2010).

    Article  PubMed  Google Scholar 

  45. Meder, U. et al. Longitudinal analysis of amplitude-integrated electroencephalography for outcome prediction in hypoxic-ischemic encephalopathy. J. Pediatr. 246, 19–25.e15 (2022).

    Article  PubMed  Google Scholar 

  46. Rondagh, M. et al. Longitudinal analysis of amplitude-integrated electroencephalography for outcome prediction in infants with hypoxic-ischemic encephalopathy: a validation study. J. Pediatr. 277, 114407 (2024).

    Article  PubMed  Google Scholar 

  47. Fitzgerald, M. P., Massey, S. L., Fung, F. W., Kessler, S. K. & Abend, N. S. High electroencephalographic seizure exposure is associated with unfavorable outcomes in neonates with hypoxic-ischemic encephalopathy. Seizure 61, 221–226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kharoshankaya, L. et al. Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev. Med. Child Neurol. 58, 1242–1248 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alharbi, H. M. et al. Seizure burden and neurologic outcomes after neonatal encephalopathy. Neurology 100, e1976–e1984 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Toet, M. C., Lemmers, P. M., van Schelven, L. J. & van Bel, F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117, 333–339 (2006).

    Article  PubMed  Google Scholar 

  51. Nakamura, S. et al. Simultaneous measurement of cerebral hemoglobin oxygen saturation and blood volume in asphyxiated neonates by near-infrared time-resolved spectroscopy. Brain Dev. 37, 925–932 (2015).

    Article  PubMed  Google Scholar 

  52. Goeral, K. et al. Prediction of outcome in neonates with hypoxic-ischemic encephalopathy II: role of amplitude-integrated electroencephalography and cerebral oxygen saturation measured by near-infrared spectroscopy. Neonatology 112, 193–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Lemmers, P. M. et al. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr. Res. 74, 180–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Niezen, C. K., Bos, A. F., Sival, D. A., Meiners, L. C. & Ter Horst, H. J. Amplitude-integrated EEG and cerebral near-infrared spectroscopy in cooled, asphyxiated infants. Am. J. Perinatol. 35, 904–910 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Agudelo-Perez, S. et al. Cerebral rScO2 measured by near-infrared spectroscopy (NIRS) during therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy: a systematic review. J. Mother Child 28, 33–44 (2024).

    PubMed  PubMed Central  Google Scholar 

  56. Nevalainen, P. et al. Towards multimodal brain monitoring in asphyxiated newborns with amplitude-integrated EEG and simultaneous somatosensory evoked potentials. Early Hum. Dev. 153, 105287 (2021).

    Article  PubMed  Google Scholar 

  57. Vanhatalo, S. & Lauronen, L. Neonatal sep - back to bedside with basic science. Semin. Fetal Neonatal Med. 11, 464–470 (2006).

    Article  PubMed  Google Scholar 

  58. Lagace, M. et al. Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy. Ann. Clin. Transl. Neurol. 11, 3267–3279 (2024).

  59. Groenendaal, F. & de Vries, L. S. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia. Pediatr. Res. 81, 150–155 (2017).

    Article  PubMed  Google Scholar 

  60. Wisnowski, J. L. et al. Neuroimaging in the term newborn with neonatal encephalopathy. Semin. Fetal Neonatal Med. 26, 101304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chau, V. et al. Comparison of computer tomography and magnetic resonance imaging scans on the third day of life in term newborns with neonatal encephalopathy. Pediatrics 123, 319–326 (2009).

    Article  PubMed  Google Scholar 

  62. Barnette, A. R. et al. Neuroimaging in the evaluation of neonatal encephalopathy. Pediatrics 133, e1508–e1517 (2014).

    Article  PubMed  Google Scholar 

  63. Eken, P., Jansen, G. H., Groenendaal, F., Rademaker, K. J. & de Vries, L. S. Intracranial lesions in the fullterm infant with hypoxic ischaemic encephalopathy: ultrasound and autopsy correlation. Neuropediatrics 25, 301–307 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Cizmeci, M. N. et al. Neonatal hypoxic-ischemic encephalopathy spectrum: severity-stratified analysis of neuroimaging modalities and association with neurodevelopmental outcomes. J. Pediatr. 266, 113866 (2024).

    Article  PubMed  Google Scholar 

  65. Annink, K. V. et al. The development and validation of a cerebral ultrasound scoring system for infants with hypoxic-ischaemic encephalopathy. Pediatr. Res. 87, 59–66 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fox, A. et al. Utility of cranial ultrasound to investigate brain injury in hypoxic-ischemic encephalopathy. Pediatr. Neurol. 163, 15–20 (2024).

    Article  PubMed  Google Scholar 

  67. Parmentier, C. E. J., de Vries, L. S. & Groenendaal, F. Magnetic resonance imaging in (near-)term infants with hypoxic-ischemic encephalopathy. Diagnostics 12, 1–18 (2022).

  68. Liu, W. et al. Prognostic value of clinical tests in neonates with hypoxic-ischemic encephalopathy treated with therapeutic hypothermia: a systematic review and meta-analysis. Front. Neurol. 11, 133 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Goergen, S. K. et al. Early MRI in term infants with perinatal hypoxic-ischaemic brain injury: interobserver agreement and MRI predictors of outcome at 2 years. Clin. Radio. 69, 72–81 (2014).

    Article  CAS  Google Scholar 

  70. Calabrese, E. et al. Correlating quantitative MRI-based apparent diffusion coefficient metrics with 24-month neurodevelopmental outcomes in neonates from the heal trial. Radiology 308, e223262 (2023).

    Article  PubMed  Google Scholar 

  71. Lambing, H. et al. Using neonatal magnetic resonance imaging to predict gross motor disability at four years in term-born children with neonatal encephalopathy. Pediatr. Neurol. 144, 50–55 (2023).

    Article  PubMed  Google Scholar 

  72. Martinez-Biarge, M., Diez-Sebastian, J., Rutherford, M. A. & Cowan, F. M. Outcomes after central grey matter injury in term perinatal hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 675–682 (2010).

    Article  PubMed  Google Scholar 

  73. Lee, B. L. et al. Long-term cognitive outcomes in term newborns with watershed injury caused by neonatal encephalopathy. Pediatr. Res 92, 505–512 (2022).

    Article  PubMed  Google Scholar 

  74. Martinez-Biarge, M. et al. White matter and cortical injury in hypoxic-ischemic encephalopathy: antecedent factors and 2-year outcome. J. Pediatr. 161, 799–807 (2012).

    Article  PubMed  Google Scholar 

  75. Harteman, J. C. et al. Diffusion-weighted imaging changes in cerebral watershed distribution following neonatal encephalopathy are not invariably associated with an adverse outcome. Dev. Med. Child Neurol. 55, 642–653 (2013).

    Article  PubMed  Google Scholar 

  76. Inder, T. E. et al. Neuroimaging of the preterm brain: review and recommendations. J. Pediatr. 237, 276–287.e274 (2021).

    Article  PubMed  Google Scholar 

  77. Hayman, M. et al. Punctate white-matter lesions in the full-term newborn: underlying aetiology and outcome. Eur. J. Paediatr. Neurol. 23, 280–287 (2019).

    Article  PubMed  Google Scholar 

  78. Wu, Y. W. et al. How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy? Pediatr. Res. 94, 1018–1025 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, Y. W. et al. Advancing brain MRI as a prognostic indicator in hypoxic-ischemic encephalopathy. Pediatr. Res. 95, 587–589 (2024).

    Article  PubMed  Google Scholar 

  80. Li, A. M. et al. White matter injury in term newborns with neonatal encephalopathy. Pediatr. Res. 65, 85–89 (2009).

    Article  PubMed  Google Scholar 

  81. Lemmon, M. E. et al. Diffusion tensor imaging detects occult cerebellar injury in severe neonatal hypoxic-ischemic encephalopathy. Dev. Neurosci. 39, 207–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Annink, K. V. et al. Cerebellar injury in term neonates with hypoxic-ischemic encephalopathy is underestimated. Pediatr. Res. 89, 1171–1178 (2021).

    Article  PubMed  Google Scholar 

  83. Raghu, K. et al. Prognostic indicators of reorientation of care in perinatal hypoxic-ischemic encephalopathy spectrum. J. Pediatr. 276, 114273 (2024).

    Article  PubMed  Google Scholar 

  84. Barkovich, A. J. et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am. J. Neuroradiol. 19, 143–149 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shankaran, S. et al. Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 97, F398–F404 (2012).

    PubMed  Google Scholar 

  86. Shankaran, S. et al. Nichd magnetic resonance brain imaging score in term infants with hypoxic-ischemic encephalopathy: a secondary analysis of a randomized clinical trial. JAMA Pediatr. (2025). Online ahead of print.

  87. Trivedi, S. B. et al. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy. Pediatr. Radio. 47, 1491–1499 (2017).

    Article  Google Scholar 

  88. Weeke, L. C. et al. A novel magnetic resonance imaging score predicts neurodevelopmental outcome after perinatal asphyxia and therapeutic hypothermia. J. Pediatr. 192, 33–40.e32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ni Bhroin, M. et al. Relationship between MRI scoring systems and neurodevelopmental outcome at two years in infants with neonatal encephalopathy. Pediatr. Neurol. 126, 35–42 (2022).

    Article  PubMed  Google Scholar 

  90. Molavi, M., Vann, S. D., de Vries, L. S., Groenendaal, F. & Lequin, M. Signal change in the mammillary bodies after perinatal asphyxia. AJNR Am. J. Neuroradiol. 40, 1829–1834 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Spencer, A. P. C. et al. Mammillary body abnormalities and cognitive outcomes in children cooled for neonatal encephalopathy. Dev. Med. Child Neurol. 65, 792–802 (2023).

    Article  PubMed  Google Scholar 

  92. Cizmeci, M. N., Martinez-Biarge, M. & Cowan, F. M. The predictive role of brain magnetic resonance imaging in neonates with hypoxic-ischemic encephalopathy. Pediatr. Res. 95, 601–602 (2024).

    Article  PubMed  Google Scholar 

  93. Ward, P. et al. Reduced fractional anisotropy on diffusion tensor magnetic resonance imaging after hypoxic-ischemic encephalopathy. Pediatrics 117, e619–e630 (2006).

    Article  PubMed  Google Scholar 

  94. Porter, E. J., Counsell, S. J., Edwards, A. D., Allsop, J. & Azzopardi, D. Tract-based spatial statistics of magnetic resonance images to assess disease and treatment effects in perinatal asphyxial encephalopathy. Pediatr. Res. 68, 205–209 (2010).

    Article  PubMed  Google Scholar 

  95. Van Steenis, A. et al. Individualized neuroprognostication in neonates with hypoxic-ischemic encephalopathy treated with hypothermia. Neurol. Clin. Pract. 15, e200370 (2025).

    Article  PubMed  Google Scholar 

  96. Chalak, L. F. et al. Mild hie and therapeutic hypothermia: gaps in knowledge with under-powered trials. Pediatr. Res. (2024). Online ahead of print.

  97. Chalak, L. F., Slaughter, J. L., King, W. C., Sepulveda, P. & Wisniewski, S. R. A new horizon for understanding the comparative effectiveness for cooling prospectively infants with mild encephalopathy. Clin. Perinatol. 51, 605–616 (2024).

    Article  PubMed  Google Scholar 

  98. Pappas, A., Milano, G. & Chalak, L. F. Hypoxic-ischemic encephalopathy: changing outcomes across the spectrum. Clin. Perinatol. 50, 31–52 (2023).

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was secured for this study. M.N.C. is supported by the Dr. Karen Pape Program in Neuroplasticity for neuroprognostication research.

Author information

Authors and Affiliations

Authors

Contributions

MNC conceptualized the review article, designed the manuscript, analyzed and interpreted the data in the literature, drafted the article, and approved the final version to be published. RC critically reviewed the article and approved the final version to be published. AvS critically reviewed the article and approved the final version to be published. LSdV analyzed and interpreted the data in the literature, critically reviewed the article, and approved the final version to be published.

Corresponding author

Correspondence to Mehmet N. Cizmeci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizmeci, M.N., Christensen, R., van Steenis, A. et al. Neuroprognostication in neonatal encephalopathy due to presumed hypoxic-ischemic encephalopathy. Pediatr Res (2025). https://doi.org/10.1038/s41390-025-04058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-025-04058-1

Search

Quick links